A numerical implementation of a modified form of the electric field Integral equation

The details of a Galerkin discretization scheme for a modified form of the electric field integral equation are outlined for smooth, three-dimensional, perfectly conducting scatterers. Limitations of the divergence conforming finite-element bases in preserving the self-stabilizing properties of the electric field integral equation operator are indicated. A numerically efficient alternative is outlined which relies on an operator-based Helmholtz decomposition. The condition number of the resulting matrix equation is demonstrated to be frequency independent for scattering from a perfectly conducting sphere at various frequencies.