PHENOMENOLOGICAL MODELING OF PHOTOEMISSION SPECTRA IN STRONGLY CORRELATED ELECTRON SYSTEMS

A phenomenological approach is presented that allows one to model, and thereby interpret photoemission spectra of strongly correlated electron systems. A simple analytical formula for the self-energy is proposed. This self-energy describes both the coherent and incoherent parts of the spectrum (quasiparticle and Hubbard peaks, respectively). Free parameters in the expression are determined by fitting the density of states to experimental photoemission data. An explicit fitting is presented for the La1-xSrxTiO3 system with 0.08 ≤ x ≤ 0.38. In general, our phenomenological approach provides information on the effective mass, the Hubbard interaction, and the spectral weight distribution in different parts of the spectrum. Limitations of this approach are also discussed.

[1]  Nikos L. Doltsinis,et al.  Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .

[2]  A. Fujimori,et al.  Electronic structure of Mott–Hubbard-type transition-metal oxides , 2001 .

[3]  D. Sarma,et al.  Electronic structure of Ca1 − xSrxVO3: A tale of two energy scales , 2001, cond-mat/0105424.

[4]  D. Vollhardt,et al.  Finite-temperature numerical renormalization group study of the Mott transition , 2000, cond-mat/0012329.

[5]  K. Held,et al.  Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study. , 2000, Physical review letters.

[6]  K. Held,et al.  REALISTIC MODELING OF STRONGLY CORRELATED ELECTRON SYSTEMS: AN INTRODUCTION TO THE LDA+DMFT APPROACH , 2000, cond-mat/0010395.

[7]  H. R. Krishnamurthy,et al.  Systematic and Causal Corrections to the Coherent Potential Approximation , 2000, cond-mat/0006431.

[8]  T. Pruschke,et al.  Combining density-functional and dynamical-mean-field theory for La 1-x Sr x TiO 3 , 2000 .

[9]  K. Held,et al.  Calculation of photoemission spectra of the doped Mott insulator using LDA+DMFT(QMC) , 2000, cond-mat/0005207.

[10]  T. Pruschke,et al.  Low-energy scale of the periodic Anderson model , 2000, cond-mat/0001357.

[11]  T. Pruschke,et al.  The soft-gap Anderson model: comparison of renormalization group and local moment approaches , 1999, cond-mat/9909101.

[12]  R. Bulla ZERO TEMPERATURE METAL-INSULATOR TRANSITION IN THE INFINITE-DIMENSIONAL HUBBARD MODEL , 1999, cond-mat/9902290.

[13]  M. R. Norman,et al.  Phenomenology of the low-energy spectral function in high-T c superconductors , 1998 .

[14]  H. Kumigashira,et al.  High-resolution photoemission study of V 2-y O 3 , 1998 .

[15]  M. Katsnelson,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[16]  Piscataway,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory , 1997, cond-mat/9704231.

[17]  Inoue,et al.  Low frequency spectroscopy of the correlated metallic system CaxSr1 -xVO3. , 1996, Physical review letters.

[18]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[19]  James Allen,et al.  Fermi liquids and non-Fermi liquids—The view from photoemission , 1995 .

[20]  Kobayashi,et al.  Spectral weight transfer and mass renormalization in Mott-Hubbard systems SrVO3 and CaVO3: Influence of long-range Coulomb interaction. , 1995, Physical review. B, Condensed matter.

[21]  Inoue,et al.  Systematic development of the spectral function in the 3d1 Mott-Hubbard system Ca1-xSrxVO3. , 1995, Physical review letters.

[22]  K. Takegahara Electronic band structures in cubic perovskite-type oxides: bismuthates and transition metal oxides , 1994 .

[23]  Hudson,et al.  Substitution-induced midgap states in the mixed oxides RxBa1-xTiO3- delta with R=Y, La, and Nd. , 1993, Physical review. B, Condensed matter.

[24]  Hase,et al.  Evolution of the spectral function in Mott-Hubbard systems with d1 configuration. , 1992, Physical review letters.

[25]  Olson,et al.  Fermi-liquid line shapes measured by angle-resolved photoemission spectroscopy on 1-T-TiTe2. , 1992, Physical review letters.

[26]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .