Nonlinear control of magnetic bearing in the presence of sinusoidal disturbance

We present a modular control strategy to achieve global asymptotic stability for the regulation problem of a single-axis active magnetic bearing (AMB) in the presence of an unknown sinusoidal disturbance (i.e., the amplitude and the frequency are unknown). Specifically, we design a set of linear, BIBO filters to facilitate the utilization of standard adaptive control techniques to compensate for the effects of the unknown sinusoidal disturbance. In view of the fact that the disturbance frequency might slowly vary with time, we utilize a least squares prediction error-based update law to promote faster convergence of the parameter estimates.

[1]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[2]  F. Matsumura,et al.  System modeling and control design of a horizontal-shaft magnetic-bearing system , 1986 .

[3]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[4]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[5]  Abdelfatah M. Mohamed,et al.  Conical magnetic bearings with radial and thrust control , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  Abdelfatah M. Mohamed,et al.  Conical magnetic bearings with radial and thrust control , 1992 .

[8]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[9]  A.M. Mohamed,et al.  Imbalance compensation and automatic balancing in magnetic bearing systems using the Q-parameterization theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[10]  R. D. Smith,et al.  Nonlinear control of a rigid rotor magnetic bearing system: modeling and simulation with full state feedback , 1995 .

[11]  P. Kokotovic,et al.  Adaptive nonlinear design with controller-identifier separation and swapping , 1995, IEEE Trans. Autom. Control..

[12]  Darren M. Dawson,et al.  Nonlinear control of active magnetic bearings: a backstepping approach , 1996, IEEE Trans. Control. Syst. Technol..

[13]  D.M. Dawson,et al.  A backstepping-type controller for a 6-DOF active magnetic bearing system , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  M. S. de Queiroz,et al.  Nonlinear control of a large gap 2-DOF magnetic bearing system based on a coupled force model , 1997 .

[15]  Darren M. Dawson,et al.  Adaptive control techniques for friction compensation , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[16]  Darren M. Dawson,et al.  Adaptive control techniques forfrictioncompensation , 1999 .

[17]  Zongli Lin,et al.  A saturated high gain control for a benchmark experiment , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[18]  R. Ortega,et al.  A novel passivity-based controller for an active magnetic bearing benchmark experiment , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  M. Baloh,et al.  Nonlinear control of a benchmark beam balance experiment using variable hyperbolic bias , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[20]  Carl R. Knospe The nonlinear control benchmark experiment , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[21]  M.S. de Queiroz,et al.  A new learning control approach to the active magnetic bearing benchmark system , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[22]  S. P. Nagarkatti,et al.  Autobalancing DCAL controller for a rotating unbalanced disk , 2002 .