Ramanujan-type supercongruences
暂无分享,去创建一个
[1] Jeus Guillera,et al. Generators of some Ramanujan formulas , 2006, 1104.0392.
[2] G. Bauer,et al. Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. , 1859 .
[3] Eric T. Mortenson,et al. A p-ADIC SUPERCONGRUENCE CONJECTURE OF VAN HAMME , 2008 .
[4] R. Osburn,et al. A p-adic analogue of a formula of Ramanujan , 2007, 0708.3307.
[5] John Michael Rassias. Geometry, Analysis and Mechanics , 1995 .
[6] Wadim Zudilin,et al. Ramanujan-type formulae for 1/pi: a second wind? , 2007, 0712.1332.
[7] Jesús Guillera,et al. About a New Kind of Ramanujan-Type Series , 2003, Exp. Math..
[8] B. M. Fulk. MATH , 1992 .
[9] F. Morley,et al. Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .
[10] Doron Zeilberger,et al. A WZ proof of Ramanujan's Formula for Pi , 1993 .
[11] Jonathan M. Borwein,et al. Modular Equations and Approximations to π , 2000 .
[12] J. Littlewood,et al. Collected Papers of Srinivasa Ramanujan , 1929, Nature.
[13] Wadim Zudilin,et al. Ramanujan-type formulae for 1/π: a second wind? , 2006 .
[14] Frederick Pollock,et al. On Certain Properties of Prime Numbers. , 1843 .
[15] Emma Lehmer,et al. On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .
[16] Jesus Guillera. Some binomial series obtained by the WZ-method , 2002, Adv. Appl. Math..