Age-Associated Insolubility of Parkin in Human Midbrain is Linked to Redox Balance and Sequestration of Reactive Dopamine Metabolites

[1]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[2]  G. Oyama,et al.  Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations , 2020, NPJ Parkinson's disease.

[3]  A. Singleton,et al.  Characterization of Recessive Parkinson Disease in a Large Multicenter Study , 2020, Annals of neurology.

[4]  David S. Park,et al.  Parkinson Disease-Linked Parkin Mediates Redox Reactions That Lower Oxidative Stress In Mammalian Brain , 2020, bioRxiv.

[5]  T. Dawson,et al.  PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease , 2020, Molecular Neurodegeneration.

[6]  Devin K. Schweppe,et al.  A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging , 2020, Cell.

[7]  R. Barker,et al.  DJ-1 can form β-sheet structured aggregates that co-localize with pathological amyloid deposits , 2020, Neurobiology of Disease.

[8]  David S. Park,et al.  Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner , 2019, Science Translational Medicine.

[9]  A. Martínez-Serrano,et al.  Lysosomal perturbations in dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation , 2019, bioRxiv.

[10]  J. Trempe,et al.  The Landscape of Parkin Variants Reveals Pathogenic Mechanisms and Therapeutic Targets in Parkinson's Disease. , 2019, Human molecular genetics.

[11]  P. Duquette,et al.  CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis , 2019, Cellular & Molecular Immunology.

[12]  I. König,et al.  Genotype‐phenotype relations for the Parkinson's disease genes SNCA, LRRK2, VPS35: MDSGene systematic review , 2018, Movement disorders : official journal of the Movement Disorder Society.

[13]  H. Cai,et al.  Parkin and PINK1 mitigate STING-induced inflammation , 2018, Nature.

[14]  Tao Wang,et al.  Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease , 2018, Nature Neuroscience.

[15]  Frank Wien,et al.  BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra , 2018, Nucleic Acids Res..

[16]  D. Komander,et al.  Mechanism of parkin activation by PINK1 , 2018, Nature.

[17]  D. Sulzer,et al.  Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson’s disease , 2018, npj Parkinson's Disease.

[18]  Bong‐Jin Lee,et al.  Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors , 2018, Archives of Pharmacal Research.

[19]  I. König,et al.  Genotype‐Phenotype Relations for the Parkinson's Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review , 2018, Movement disorders : official journal of the Movement Disorder Society.

[20]  David S. Park,et al.  Comparative analysis of Parkinson's disease–associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons , 2018, The Journal of Biological Chemistry.

[21]  P. Abete,et al.  Oxidative stress, aging, and diseases , 2018, Clinical interventions in aging.

[22]  A. Brice,et al.  Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20‐dependent negative feedback loop , 2018, Glia.

[23]  M. Perkins,et al.  Chemical methods for mapping cysteine oxidation. , 2018, Chemical Society reviews.

[24]  R. Kiss,et al.  Structural features of human DJ-1 in distinct Cys106 oxidative states and their relevance to its loss of function in disease. , 2017, Biochimica et biophysica acta. General subjects.

[25]  T. Dawson,et al.  Activation mechanisms of the E3 ubiquitin ligase parkin. , 2017, The Biochemical journal.

[26]  M. Goldberg,et al.  Parkin and PINK1 functions in oxidative stress and neurodegeneration , 2017, Brain Research Bulletin.

[27]  M. G. Bridelli,et al.  Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin Analogues Suitable for Modeling Parkinson's Disease. , 2017, ACS chemical neuroscience.

[28]  E. Ziviani,et al.  Post translational modification of Parkin , 2017, Biology Direct.

[29]  P. Mercier,et al.  Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation , 2016, Proceedings of the National Academy of Sciences.

[30]  W. Maret,et al.  The biological inorganic chemistry of zinc ions☆ , 2016, Archives of biochemistry and biophysics.

[31]  H. McBride,et al.  Parkinson’s Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation , 2016, Cell.

[32]  G. Dorn,et al.  Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice , 2015, Science.

[33]  P. Mercier,et al.  Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis , 2015, The EMBO journal.

[34]  Scott R. Kennedy,et al.  Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress , 2015, Neuron.

[35]  Frank Wien,et al.  Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy , 2015, Proceedings of the National Academy of Sciences.

[36]  Chuong B. Do,et al.  Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease , 2014, Nature Genetics.

[37]  A. Brice,et al.  Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice , 2014, PloS one.

[38]  J. Segura-Aguilar,et al.  Protective and toxic roles of dopamine in Parkinson's disease , 2014, Journal of neurochemistry.

[39]  B. Tang,et al.  Association analysis of STK39, MCCC1/LAMP3 and sporadic PD in the Chinese Han population , 2014, Neuroscience Letters.

[40]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[41]  H. McBride,et al.  Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control , 2014, The EMBO journal.

[42]  Ted M. Dawson,et al.  Parkin Plays a Role in Sporadic Parkinson's Disease , 2013, Neurodegenerative Diseases.

[43]  S. Melov,et al.  SOD2 in mitochondrial dysfunction and neurodegeneration. , 2013, Free radical biology & medicine.

[44]  R. Takahashi,et al.  S-nitrosylation regulates mitochondrial quality control via activation of parkin , 2013, Scientific Reports.

[45]  P. Mercier,et al.  A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease , 2013, Nature Communications.

[46]  David Komander,et al.  Structure of the human Parkin ligase domain in an autoinhibited state , 2013, The EMBO journal.

[47]  J. Hardy,et al.  Parkin disease: a clinicopathologic entity? , 2013, JAMA neurology.

[48]  S. Snyder,et al.  Sulfhydration mediates neuroprotective actions of parkin , 2013, Nature Communications.

[49]  W. Wurst,et al.  The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. , 2013, Molecular cell.

[50]  Hua Li,et al.  Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase , 2013, Protein & Cell.

[51]  C. Ramseyer,et al.  About the structural role of disulfide bridges in serum albumins: evidence from protein simulated unfolding. , 2012, Biopolymers.

[52]  D. Grimes,et al.  Considerations Regarding the Etiology and Future Treatment of Autosomal Recessive Versus Idiopathic Parkinson Disease , 2012, Current Treatment Options in Neurology.

[53]  Zhen Yan,et al.  Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells , 2012, Nature Communications.

[54]  S. Lipton,et al.  Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation , 2011, Molecular Neurodegeneration.

[55]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[56]  Mohamad Saad,et al.  Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies , 2011, The Lancet.

[57]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[58]  Tamar Unger,et al.  Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. , 2010, Journal of structural biology.

[59]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[60]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[61]  A. Letai,et al.  Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. , 2009, Human molecular genetics.

[62]  A. Pisani,et al.  Impaired dopamine release and synaptic plasticity in the striatum of Parkin−/− mice , 2009, Journal of neurochemistry.

[63]  V. Hristova,et al.  Identification of a Novel Zn2+-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E3 Ligase Parkin* , 2009, Journal of Biological Chemistry.

[64]  K. Lohmann,et al.  Parkinson disease(s) , 2009, Neurology.

[65]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[66]  M. Mena,et al.  Glial Dysfunction in Parkin Null Mice: Effects of Aging , 2008, The Journal of Neuroscience.

[67]  M. LaVoie,et al.  The effects of oxidative stress on parkin and other E3 ligases , 2007, Journal of neurochemistry.

[68]  M. Mena,et al.  Mortality, oxidative stress and tau accumulation during ageing in parkin null mice , 2007, Journal of neurochemistry.

[69]  K. Lim,et al.  Relative Sensitivity of Parkin and Other Cysteine-containing Enzymes to Stress-induced Solubility Alterations* , 2007, Journal of Biological Chemistry.

[70]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[71]  W. Maret Zinc coordination environments in proteins as redox sensors and signal transducers. , 2006, Antioxidants & redox signaling.

[72]  A. Brice,et al.  Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. , 2006, Human molecular genetics.

[73]  Kenneth M. Rosen,et al.  Parkin Protects against Mitochondrial Toxins and β-Amyloid Accumulation in Skeletal Muscle Cells* , 2006, Journal of Biological Chemistry.

[74]  Olga Pletnikova,et al.  Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. , 2005, Human molecular genetics.

[75]  A. Brice,et al.  Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function , 2005, Journal of neurochemistry.

[76]  D. Selkoe,et al.  Dopamine covalently modifies and functionally inactivates parkin , 2005, Nature Medicine.

[77]  R. Hilker,et al.  Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers , 2005, Annals of neurology.

[78]  K. Lim,et al.  Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. , 2005, Human molecular genetics.

[79]  J. C. Greene,et al.  Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  K. Lim,et al.  Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease‐linked point mutations , 2005, Journal of neurochemistry.

[81]  Jian Feng,et al.  Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. , 2004, Human molecular genetics.

[82]  Takashi Uehara,et al.  Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Troncoso,et al.  S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function , 2004, Science.

[84]  Joachim Klose,et al.  Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice* , 2004, Journal of Biological Chemistry.

[85]  M. Ruberg,et al.  The C289G and C418R missense mutations cause rapid sequestration of human Parkin into insoluble aggregates , 2003, Neurobiology of Disease.

[86]  R. Palmiter,et al.  Novel Monoclonal Antibodies Demonstrate Biochemical Variation of Brain Parkin with Age* , 2003, Journal of Biological Chemistry.

[87]  K. Winklhofer,et al.  Inactivation of Parkin by Oxidative Stress and C-terminal Truncations , 2003, Journal of Biological Chemistry.

[88]  P. Lockhart,et al.  RING finger 1 mutations in Parkin produce altered localization of the protein. , 2003, Human molecular genetics.

[89]  Bryan L Roth,et al.  Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons* , 2003, Journal of Biological Chemistry.

[90]  Santiago Canals,et al.  Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. , 2003, Human molecular genetics.

[91]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[92]  N. Hattori,et al.  Autosomal recessive parkinsonism linked to parkin gene in a Tunisian family. Clinical, genetic and pathological study. , 2003, Parkinsonism & related disorders.

[93]  Nicholas W Wood,et al.  Parkin disease: a phenotypic study of a large case series. , 2003, Brain : a journal of neurology.

[94]  N. Hattori,et al.  Effect of Wild-type or Mutant Parkin on Oxidative Damage, Nitric Oxide, Antioxidant Defenses, and the Proteasome* , 2002, The Journal of Biological Chemistry.

[95]  B. Hyman,et al.  Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. , 2002, The American journal of pathology.

[96]  Yilun Sun,et al.  SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. , 2001, Antioxidants & redox signaling.

[97]  Hitoshi Takahashi,et al.  An autopsy case of autosomal‐recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene , 2000, Movement disorders : official journal of the Movement Disorder Society.

[98]  Bonifati,et al.  Association between early-onset Parkinson's disease and mutations in the parkin gene. , 2000, The New England journal of medicine.

[99]  S. Minoshima,et al.  Immunohistochemical and subcellular localization of parkin protein: Absence of protein in autosomal recessive juvenile parkinsonism patients , 1999, Annals of neurology.

[100]  Y. Mizuno,et al.  Clinical, pathologic and genetic studies on autosomal recessive early-onset parkinsonism with diurnal fluctuation. , 1998, Parkinsonism & related disorders.

[101]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[102]  W Slikker,et al.  MPTP‐induced oxidative stress and neurotoxicity are age‐dependent: Evidence from measures of reactive oxygen species and striatal dopamine levels , 1994, Synapse.

[103]  S. Yoshioka,et al.  The Aggregation of Bovine Serum Albumin in Solution and in the Solid State , 1994, The Journal of pharmacy and pharmacology.

[104]  S. Tsuji,et al.  Familial juvenile parkinsonism , 1994, Neurology.

[105]  W. Gibb,et al.  New pathologic observations in juvenile onset parkinsonism with dystonia , 1991, Neurology.

[106]  Hans Lassmann,et al.  An updated histological classification system for multiple sclerosis lesions , 2016, Acta Neuropathologica.

[107]  V. Hristova,et al.  Identification of a Novel Zn 2 !-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E 3 Ligase Parkin * , 2016 .

[108]  C. Muller,et al.  Improved chemiluminescence assay for measuring antioxidant capacity of seminal plasma. , 2013, Methods in molecular biology.

[109]  D. Sulzer,et al.  Neuromelanin of the Human Substantia Nigra: An Update , 2013, Neurotoxicity Research.

[110]  L. Bubacco,et al.  Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis , 2012, JBIC Journal of Biological Inorganic Chemistry.

[111]  T. Dawson,et al.  S-nitrosylation in Parkinson's disease and related neurodegenerative disorders. , 2005, Methods in enzymology.

[112]  M. Schlossmacher,et al.  Parkinson's disease: assays for the ubiquitin ligase activity of neural Parkin. , 2005, Methods in molecular biology.

[113]  R. Ratan Antioxidants and the Treatment of Neurological Disease , 1999 .

[114]  高橋 均,et al.  Familial juvenile parkinsonism: clinical and pathologic study in afamily , 1993 .

[115]  M. Yokochi,et al.  Juvenile parkinsonism--some clinical, pharmacological, and neuropathological aspects. , 1984, Advances in neurology.