Large, low-field and reversible magnetostrictive effect in MnCoSi-based metamagnet at room temperature

[1]  N. van Dijk,et al.  Design of Reversible Low-Field Magnetocaloric Effect at Room Temperature in Hexagonal MnMX Ferromagnets , 2019, Physical Review Applied.

[2]  Jun Liu,et al.  Giant reversible magnetocaloric effect in MnNiGe-based materials: Minimizing thermal hysteresis via crystallographic compatibility modulation , 2019, Acta Materialia.

[3]  D. H. Wang,et al.  Large reversible magnetostriction and improved mechanical properties in epoxy-reinforced MnCoSi1-xGex cast ingots , 2019, Journal of Alloys and Compounds.

[4]  Shanning Zhang,et al.  Large reversible magnetostrictive effect of MnCoSi–based compounds prepared by high-magnetic-field solidification , 2018 .

[5]  Jun Liu,et al.  Enhanced magnetic refrigeration performance in metamagnetic MnCoSi alloy by high-pressure annealing , 2017 .

[6]  Youwei Du,et al.  Large magnetostrain in magnetic-field-aligned Mn0.965CoGe compound , 2017 .

[7]  H Zhao,et al.  Highly thermal-stable ferromagnetism by a natural composite , 2017, Nature Communications.

[8]  Jun Liu,et al.  Large reversible magnetostriction in B-substituted MnCoSi alloy at room temperature , 2017 .

[9]  Tianli Zhang,et al.  Giant heterogeneous magnetostriction in Fe–Ga alloys: Effect of trace element doping , 2016 .

[10]  Jun Liu,et al.  Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window , 2016, Scientific Reports.

[11]  Jian Liu,et al.  Textured, dense and giant magnetostrictive alloy from fissile polycrystal , 2015 .

[12]  Yong Li,et al.  Unprecedentedly Wide Curie‐Temperature Windows as Phase‐Transition Design Platform for Tunable Magneto‐Multifunctional Materials , 2015, 1507.05905.

[13]  H. D. Chopra,et al.  Non-Joulian magnetostriction , 2015, Nature.

[14]  Q. Cao,et al.  Large reversible magnetostrictive effect in the Gd1−xSmxMn2Ge2 (x = 0.37, 0.34) alloys at room temperature , 2015 .

[15]  W. Wang,et al.  Structural and magnetic properties of MnCo1−xFexSi alloys , 2015, 1503.01226.

[16]  D. Young,et al.  Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems , 2015 .

[17]  J. Yang,et al.  Wide temperature span of entropy change in first-order metamagnetic MnCo1−xFexSi , 2013, 1306.3582.

[18]  K. Knight,et al.  Magnetoelastic coupling and competing entropy changes in substituted CoMnSi metamagnets , 2012, 1208.3176.

[19]  J. Staunton,et al.  Tuning the metamagnetism of an antiferromagnetic metal , 2012, 1206.3394.

[20]  L. I. Medvedeva,et al.  Behavior of antiferromagnetic MnCoSi in a magnetic field under pressure , 2011 .

[21]  Apurva Mehta,et al.  Giant magnetostriction in annealed Co(1-x)Fe(x) thin-films. , 2011, Nature communications.

[22]  Huibin Xu,et al.  Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets , 2011, Nature Communications.

[23]  K. Hono,et al.  Designed Metamagnetism in CoMnGe_{1-x}P_{x} , 2011, 1101.2099.

[24]  K. G. Sandeman,et al.  The magnetocaloric performance in pure and mixed magnetic phase CoMnSi , 2010 .

[25]  K. G. Sandeman,et al.  Structurally driven metamagnetism in MnP and relatedPnmacompounds , 2010, 1003.5193.

[26]  K. Knight,et al.  Giant magnetoelastic coupling in a metallic helical metamagnet. , 2010, Physical review letters.

[27]  S. Aksoy,et al.  Large magnetostrain in polycrystalline Ni–Mn–In–Co , 2009 .

[28]  L. Cohen,et al.  Capturing first- and second-order behavior in magnetocaloric CoMnSi0.92Ge0.08 , 2009 .

[29]  L. Cohen,et al.  Measurement of the magnetocaloric properties of CoMn 0.95 Fe 0.05 Si : Large change with Fe substitution , 2008 .

[30]  Q. Wahab,et al.  New materials for micro-scale sensors and actuators An engineering review , 2007 .

[31]  Cambridge,et al.  Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1- xGex , 2006, cond-mat/0603858.

[32]  Huibin Xu,et al.  Temperature dependence of the giant magnetostrain in a NiMnGa magnetic shape memory alloy , 2005 .

[33]  Chengbao Jiang,et al.  Superhigh strains by variant reorientation in the nonmodulated ferromagnetic NiMnGa alloys , 2002 .

[34]  Y. Iijima,et al.  Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds , 2001 .

[35]  Alexei Sozinov,et al.  Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature , 2001 .

[36]  Marilyn Wun-Fogle,et al.  Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga , 2000 .

[37]  P. Algarabel,et al.  Magnetic-field-induced structural phase transition in Gd 5 ( S i 1.8 Ge 2.2 ) , 1998 .

[38]  R. Hoffmann,et al.  The TiNiSi Family of Compounds: Structure and Bonding , 1998 .

[39]  Arthur E. Clark,et al.  Magnetostriction ‘‘jumps’’ in twinned Tb0.3Dy0.7Fe1.9 , 1988 .

[40]  A. Pędziwiatr,et al.  Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe , 1981 .

[41]  V. Johnson Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides , 1975 .

[42]  L. Schultz,et al.  A 1% magnetostrain in polycrystalline 5M Ni–Mn–Ga , 2009 .

[43]  A. Olabi,et al.  Design and application of magnetostrictive materials , 2008 .