NEW JULIA AND MANDELBROT SETS FOR A NEW FASTER ITERATIVE PROCESS

Fixed point iterative procedures are the backbones of fractal geometry. In existing literature Julia sets, Mandelbrot sets and their variants have been studied using one - step, two - step, three - step and four - step iterative process. Recently, M. Abbas and T. Nazir (12) introduced a new iterative process (a four-step iterative process) which is faster than all of Picard, Mann and Agarwal processes. In this paper, we obtain further generalizations of Julia and Mandelbrot sets using this faster iterative process for quadratic, cubic and higher degree polynomials. Further, we analyze that few Julia and Mandelbrot sets took the shape of Lord Ganesha (name of Hindu God), Dragon and Urn.

[1]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[2]  R. Chugh,et al.  Study of Cubic Julia Sets in , 2013 .

[3]  R. Chugh,et al.  Fractals Generated by Various Iterative Procedures - A Survey , 2014 .

[4]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[5]  James Robertson,et al.  A generalized mandelbrot set and the role of critical points , 1992, Comput. Graph..

[6]  Winter Sinkala,et al.  A new iterative approach to fractal models , 2012 .

[7]  Tan Lei,et al.  Similarity between the Mandelbrot set and Julia sets , 1990 .

[8]  Chao Luo,et al.  Generalized Julia sets from a non-analytic complex mapping , 2006, Appl. Math. Comput..

[9]  Rashi Agarwal,et al.  Dynamic noise perturbed generalized superior Mandelbrot sets , 2012 .

[10]  Mamta Rani,et al.  Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.

[11]  Young Hee Geum,et al.  Groebner basis, resultants and the generalized Mandelbrot set , 2009 .

[12]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[13]  X. Y. Wang,et al.  Noise-perturbed quaternionic Mandelbrot sets , 2009, Int. J. Comput. Math..

[14]  Renu Chugh,et al.  Dynamics of Antifractals in Noor Orbit , 2012 .

[15]  Mamta Rani,et al.  Circular saw Mandelbrot set , 2009 .

[16]  Ashish Negi,et al.  A new approach to dynamic noise on superior Mandelbrot set , 2008 .

[17]  Michael Yampolsky,et al.  Geography of the cubic connectedness locus: Intertwining surgery , 1996 .

[18]  Mamta Rani,et al.  Effect of noise on julij sets generjted by logistic MJP , 2010, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE).

[19]  Sy-Sang Liaw The Parameter Spaces of the Cubic Polyomials , 1998 .

[20]  Dominic Rochon,et al.  A GENERALIZED MANDELBROT SET FOR BICOMPLEX NUMBERS , 2000 .

[21]  M. Rani,et al.  Superior Julia Set , 2004 .

[22]  Ashish Negi,et al.  Midgets of superior Mandelbrot set , 2008 .

[23]  Mamta Rani Superior tricorns and multicorns , 2010 .

[24]  Bruno Buchberger,et al.  Groebner basis , 2010, Scholarpedia.

[25]  Rae A. Earnshaw,et al.  Fractals and Chaos , 2011 .

[26]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .