Comprehensive analysis of the chromatin landscape in Drosophila

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  D. Hogness,et al.  The units of DNA replication in Drosophila melanogaster chromosomes. , 1974, Cold Spring Harbor symposia on quantitative biology.

[3]  Sarah C. R. Elgin,et al.  The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence , 1979, Cell.

[4]  Carl Wu The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I , 1980, Nature.

[5]  S. Elgin The formation and function of DNase I hypersensitive sites in the process of gene activation. , 1988, The Journal of biological chemistry.

[6]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[7]  J. C. Clemens,et al.  Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Christian Beisel,et al.  Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1 , 2002, Nature.

[9]  M. Groudine,et al.  Controlling the double helix , 2003, Nature.

[10]  David M MacAlpine,et al.  Coordination of replication and transcription along a Drosophila chromosome. , 2004, Genes & development.

[11]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[12]  Bing Li,et al.  Histone H3 Methylation by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic Transcription , 2005, Cell.

[13]  Richard Bourgon,et al.  Genome-wide analysis of Polycomb targets in Drosophila melanogaster , 2006, Nature Genetics.

[14]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[15]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[16]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[17]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[18]  Michael B. Eisen,et al.  Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome , 2008, Chromosoma.

[19]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[20]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[21]  Bing Li,et al.  MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. , 2007, Molecular cell.

[22]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[23]  Yuri B Schwartz,et al.  Polycomb complexes and epigenetic states. , 2008, Current opinion in cell biology.

[24]  B. Bernstein,et al.  Chromatin state maps: new technologies, new insights. , 2008, Current opinion in genetics & development.

[25]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[26]  Dustin E. Schones,et al.  Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis , 2010, Genome Biology.

[27]  E. Furlong,et al.  Combinatorial binding predicts spatio-temporal cis-regulatory activity , 2009, Nature.

[28]  James B. Brown,et al.  Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions , 2009, Genome Biology.

[29]  Amos Tanay,et al.  Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos , 2009, PLoS biology.

[30]  R. Sandstrom,et al.  CCCTC-binding factor and the transcription factor T-bet orchestrate T helper 1 cell-specific structure and function at the interferon-gamma locus. , 2009, Immunity.

[31]  S. Henikoff,et al.  Genome-wide profiling of salt fractions maps physical properties of chromatin. , 2009, Genome research.

[32]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[33]  G. Reuter,et al.  Cellular mechanism for targeting heterochromatin formation in Drosophila. , 2009, International review of cell and molecular biology.

[34]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[35]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[36]  Simon Anders,et al.  Visualisation of genomic data with the Hilbert curve , 2009 .

[37]  P. Scacheri,et al.  CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing , 2009, Development.

[38]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[39]  Kairong Cui,et al.  H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions in the human genome , 2009, Nature Genetics.

[40]  Per Stenberg,et al.  Alternative Epigenetic Chromatin States of Polycomb Target Genes , 2010, PLoS genetics.

[41]  S. Henikoff,et al.  Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones , 2010, Science.

[42]  Gos Micklem,et al.  Supporting Online Material Materials and Methods Figs. S1 to S50 Tables S1 to S18 References Identification of Functional Elements and Regulatory Circuits by Drosophila Modencode , 2022 .

[43]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[44]  Richard A Young,et al.  Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. , 2010, Molecular cell.

[45]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[46]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[47]  D. Fargo,et al.  Global Analysis of Short RNAs Reveals Widespread Promoter-Proximal Stalling and Arrest of Pol II in Drosophila , 2010, Science.

[48]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[49]  Raymond K. Auerbach,et al.  Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project , 2010, Science.

[50]  R. Gordân,et al.  Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. , 2010, Genome research.

[51]  Peter J. Park,et al.  An assessment of histone-modification antibody quality , 2010, Nature Structural &Molecular Biology.

[52]  Jacob D. Jaffe,et al.  Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. , 2011, Genome research.

[53]  Li Yang,et al.  The transcriptional diversity of 25 Drosophila cell lines. , 2011, Genome research.

[54]  B. Graveley The developmental transcriptome of Drosophila melanogaster , 2010, Nature.

[55]  Peter J. Bickel,et al.  The Developmental Transcriptome of Drosophila melanogaster , 2010, Nature.