Robustness analysis using the /spl nu/ tool

The mixed /spl mu/ analysis enables one to study robust stability and performance of a controller in the presence of real parametric uncertainties and neglected dynamics. In spite of the NP-hard characteristic of the problem, it provides a new possible way to compute an interval for the structured singular value /spl mu/ using polynomial-time algorithms. Certain problems however naturally require the skewed /spl mu/ tool (i.e. the /spl nu/ tool) rather than the /spl mu/ tool. This paper proposes both mixed /spl nu/ upper and lower bounds.

[1]  V. Fromion,et al.  Adaptive H∞ Control Using Coprime Factors and Set-Membership Identification: The Nonlinear Case , 1995 .

[2]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..

[3]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[4]  M. Morari,et al.  Computational Complexity of p Calculation , 1994 .

[5]  Gilles Ferreres,et al.  PARAMETRIC ROBUSTNESS EVALUATION OF A H MISSILE AUTOPILOT , 1996 .

[6]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[7]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[8]  M. Morari,et al.  Some new properties of the structured singular value , 1988 .

[9]  Vincent Fromion,et al.  Advanced computation of the robustness margin , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  John C. Doyle,et al.  Computing bounds for the mixed μ problem , 1995 .

[11]  Gary J. Balas,et al.  Design of robust, time-varying controllers for missile autopilots , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[12]  Blaise Morton New applications of mu to real-parameter variation problems , 1985, 1985 24th IEEE Conference on Decision and Control.

[13]  André L. Tits,et al.  A measure of worst-case H ∞ performance and of largest acceptable uncertainty , 1992 .

[14]  V. Fromion,et al.  Computation of the robustness margin with the skewed m tool , 1997 .

[15]  Athanasios Sideris,et al.  Robustness Margin Calculation with Dynamic and Real Parametric Uncertainty , 1988, 1988 American Control Conference.

[16]  Direct computation of the maximal SSV over the frequency range using the v tool , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[18]  P. H. Lee,et al.  A Multiplier Method for Computing Real Multivariable Stability Margin , 1993 .

[19]  J. Doyle,et al.  Computation of mu with real and complex uncertainties , 1990, 29th IEEE Conference on Decision and Control.