Efficient fast marching with Finsler metrics

We study the discretization of the escape time problem: find the length of the shortest path joining an arbitrary point $$z$$z of a domain $$\Omega $$Ω, to the boundary $$\partial \Omega $$∂Ω. Path length is measured locally via a Finsler metric, potentially asymmetric and strongly anisotropic. This optimal control problem can be reformulated as a static Hamilton–Jacobi partial differential equation, or as a front propagation model. It has numerous applications, ranging from motion planning to image segmentation. We introduce a new algorithm, fast marching using anisotropic stencil refinement (FM-ASR), which addresses this problem on a two dimensional domain discretized on a cartesian grid. The local stencils used in our discretization are produced by arithmetic means, like in the FM-LBR (Mirebeau in Anisotropic fast Marching on Cartesian grids, using lattice basis reduction, preprint 2012), a method previously introduced by the author in the special case of Riemannian metrics. The complexity of the FM-ASR, in an average sense over all grid orientations, only depends (poly-)logarithmically on the anisotropy ratio of the metric, while most alternative approaches have a polynomial dependence. Numerical experiments show, in several occasions, that the accuracy/complexity compromise is improved by an order of magnitude or more.

[1]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[2]  Laurent D. Cohen,et al.  Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement , 2011, International Journal of Computer Vision.

[3]  J.-M. Mirebeau On the Accuracy of Anisotropic Fast Marching , 2012 .

[4]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[5]  Christian Rasch,et al.  Remarks on the O(N) Implementation of the Fast Marching Method , 2007, ArXiv.

[6]  Tyrone E. Duncan,et al.  Numerical Methods for Stochastic Control Problems in Continuous Time (Harold J. Kushner and Paul G. Dupuis) , 1994, SIAM Rev..

[7]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[8]  Sigurd B. Angenent,et al.  Finsler Active Contours , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[10]  Heping Ma,et al.  Optimal Error Estimates of the Chebyshev-Legendre Spectral Method for Solving the Generalized Burgers Equation , 2003, SIAM J. Numer. Anal..

[11]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[12]  Jean-Marie Mirebeau,et al.  Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction , 2012, SIAM J. Numer. Anal..

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[14]  Adam M. Oberman,et al.  Homogenization of Metric Hamilton-Jacobi Equations , 2009, Multiscale Model. Simul..

[15]  C. Rasch,et al.  Remarks on the implementation of the fast marching method , 2009 .

[16]  Qingfen Lin,et al.  Enhancement, Extraction, and Visualization of 3D Volume Data , 2001 .

[17]  Laurent D. Cohen,et al.  Geodesic Methods in Computer Vision and Graphics , 2010, Found. Trends Comput. Graph. Vis..

[18]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[19]  Ian M. Mitchell,et al.  An Ordered Upwind Method with Precomputed Stencil and Monotone Node Acceptance for Solving Static Convex Hamilton-Jacobi Equations , 2012, J. Sci. Comput..

[20]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[21]  Robin Ferner Enhancement , 2012, BMJ : British Medical Journal.

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[23]  Alexander Vladimirsky,et al.  Label-Setting Methods for Multimode Stochastic Shortest Path Problems on Graphs , 2007, Math. Oper. Res..

[24]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[25]  Hervé Delingette,et al.  An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology , 2007, FIMH.

[26]  Ian M. Mitchell,et al.  Fast Marching Methods for Stationary Hamilton-Jacobi Equations with Axis-Aligned Anisotropy , 2008, SIAM J. Numer. Anal..

[27]  Marc Niethammer,et al.  Globally Optimal Finsler Active Contours , 2009, DAGM-Symposium.