Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis

Recent experiments claimed that the catalysis of reaction rates in numerous bond-dissociation reactions occurs via the decrease of activation barriers driven by non-equilibrium (“hot”) electrons in illuminated plasmonic metal nanoparticles. Thus, these experiments identify plasmon-assisted photocatalysis as a promising path for enhancing the efficiency of various chemical reactions. Here, we argue that what appears to be photocatalysis is much more likely thermo-catalysis, driven by the well-known plasmon-enhanced ability of illuminated metallic nanoparticles to serve as heat sources. Specifically, we point to some of the most important papers in the field, and show that a simple theory of illumination-induced heating can explain the extracted experimental data to remarkable agreement, with minimal to no fit parameters. We further show that any small temperature difference between the photocatalysis experiment and a control experiment performed under external heating is effectively amplified by the exponential sensitivity of the reaction, and is very likely to be interpreted incorrectly as “hot” electron effects.

[1]  Bernard Kippelen,et al.  A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films , 2010 .

[2]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[3]  J. Dionne,et al.  In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles , 2018, Nature Communications.

[4]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[5]  Huaiyong Zhu,et al.  Photon Energy Threshold in Direct Photocatalysis with Metal Nanoparticles: Key Evidence from the Action Spectrum of the Reaction. , 2017, The journal of physical chemistry letters.

[6]  S. Meech,et al.  Surface plasmon enhanced substrate mediated photochemistry on roughened silver , 2000 .

[7]  Michel Orrit,et al.  Gold Nanoparticles as Absolute Nanothermometers , 2018, Nano letters.

[8]  D. Cahill,et al.  Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering , 2016 .

[9]  Vladimir M. Shalaev,et al.  Refractory Plasmonics , 2014, Science.

[10]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[11]  H. Bechtel,et al.  High-spatial-resolution mapping of catalytic reactions on single particles , 2017, Nature.

[12]  M. Aeschlimann,et al.  Hot electron lifetimes in metals probed by time-resolved two-photon photoemission , 2015 .

[13]  H. Clercx,et al.  Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses. , 2018, ACS nano.

[14]  Weitao Yang,et al.  Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects. , 2018, Nano letters.

[15]  K. Schanze,et al.  Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol , 2013, Scientific Reports.

[16]  S. Reich,et al.  Theory of hot electrons: general discussion. , 2019, Faraday discussions.

[17]  Weitao Yang,et al.  Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation , 2017, Nature Communications.

[18]  Tomasz S. Wiśniewski,et al.  A review of models for effective thermal conductivity of composite materials , 2014 .

[19]  Uday K Chettiar,et al.  Frequency-domain simulations of a negative-index material with embedded gain. , 2009, Optics express.

[20]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[21]  K. Sokolov Nanotechnology: Tiny thermometers used in living cells , 2013, Nature.

[22]  Ieng-Wai Un,et al.  Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis” , 2019, Science.

[23]  E. Waclawik,et al.  Plasmonic Switching of the Reaction Pathway: Visible-Light Irradiation Varies the Reactant Concentration at the Solid-Solution Interface of a Gold-Cobalt Catalyst. , 2019, Angewandte Chemie.

[24]  Jie Liu,et al.  Light-Induced Thermal Gradients in Ruthenium Catalysts Significantly Enhance Ammonia Production. , 2019, Nano letters.

[25]  S. Link,et al.  Chemical Interface Damping Depends on Electrons Reaching the Surface. , 2017, ACS nano.

[26]  P. Nordlander,et al.  Plasmon-Mediated Catalytic O2 Dissociation on Ag Nanostructures: Hot Electrons or Near Fields? , 2019, ACS Energy Letters.

[27]  S. Maier,et al.  Spectral Screening of the Energy of Hot Holes over a Particle Plasmon Resonance. , 2019, Nano letters.

[28]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[29]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[30]  Ieng-Wai Un,et al.  Size-dependence of the photothermal response of a single metal nanosphere , 2019, Journal of Applied Physics.

[31]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[32]  Vladimir M. Shalaev,et al.  Temperature-dependent optical properties of gold thin films , 2016 .

[33]  E Di Fabrizio,et al.  Hot-electron nanoscopy using adiabatic compression of surface plasmons. , 2013, Nature nanotechnology.

[34]  T. Nagao,et al.  Hot Electron Excitation from Titanium Nitride Using Visible Light , 2016 .

[35]  Yugang Sun,et al.  Selective Transfer Coupling of Nitrobenzene to Azoxybenzene on Rh Nanoparticle Catalyst Promoted by Photoexcited Hot Electrons , 2019, ChemNanoMat.

[36]  P. Jain,et al.  Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid , 2019, Nature Communications.

[37]  Y. Sivan,et al.  Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics. , 2017, Physical review. E.

[38]  J. Khurgin,et al.  The Role of Surface Roughness in Plasmonic-Assisted Internal Photoemission Schottky Photodetectors , 2018, ACS Photonics.

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[40]  Joseph Shappir,et al.  Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. , 2012, Optics express.

[41]  Daniel Moses,et al.  Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. , 2011, Nano letters.

[42]  Dayne F. Swearer,et al.  Plasmonic Photocatalysis of Nitrous Oxide into N2 and O2 Using Aluminum-Iridium Antenna-Reactor Nanoparticles. , 2019, ACS nano.

[43]  Satoshi Kawata,et al.  Nanoscale heating of laser irradiated single gold nanoparticles in liquid. , 2011, Optics express.

[44]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[45]  Ravishankar Sundararaman,et al.  Plasmonic hot electron transport drives nano-localized chemistry , 2017, Nature Communications.

[46]  Satoru Shoji,et al.  Ultrasmall all-optical plasmonic switch and its application to superresolution imaging , 2016, Scientific Reports.

[47]  Ieng-Wai Un,et al.  Assistance of metal nanoparticles in photocatalysis - nothing more than a classical heat source. , 2019, Faraday discussions.

[48]  Lei Zhang,et al.  Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis. , 2016, Journal of the American Chemical Society.

[49]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[50]  E. R. White,et al.  Nanoscale temperature mapping in operating microelectronic devices , 2015, Science.

[51]  Prashant V Kamat,et al.  Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[52]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[53]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[54]  S. Linic,et al.  Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. , 2016, ACS nano.

[55]  H. Giessen,et al.  Nanoscale Hydrogenography on Single Magnesium Nanoparticles. , 2018, Nano letters.

[56]  Y. Sivan,et al.  Experimental practices required to isolate thermal effects in plasmonic photo-catalysis: lessons from recent experiments , 2020 .

[57]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[58]  Zhiming M. Wang,et al.  Determining Plasmonic Hot Electrons and Photothermal Effects during H2 Evolution with TiN–Pt Nanohybrids , 2020 .

[59]  Peter Nordlander,et al.  Embedding plasmonic nanostructure diodes enhances hot electron emission. , 2013, Nano letters.

[60]  J. Valentine,et al.  Harvesting the loss: surface plasmon-based hot electron photodetection , 2017 .

[61]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[62]  Bonn,et al.  Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) , 1999, Science.

[63]  J. Koetz,et al.  The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol , 2019, Scientific Reports.

[64]  Serge Monneret,et al.  Photoinduced heating of nanoparticle arrays. , 2013, ACS nano.

[65]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[66]  P. Nordlander,et al.  Response to Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis” , 2019, Science.

[67]  Y. Sivan,et al.  Nonlinear plasmonics at high temperatures , 2016, 1607.03481.

[68]  Wei Liu,et al.  CORRIGENDUM: Biodegradation-inspired bioproduction of methylacetoin and 2-methyl-2,3-butanediol , 2013, Scientific Reports.

[69]  Jin Zhao,et al.  Plasmonic coupling at a metal/semiconductor interface , 2017 .

[70]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[71]  P. Sautet,et al.  Heterolytic Splitting of H2 and CH4 on γ-Alumina as a Structural Probe for Defect Sites , 2006 .

[72]  Temperature- and roughness- dependent permittivity of annealed/unannealed gold films. , 2016, Optics express.

[73]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[74]  J. Baumberg,et al.  Plasmon-induced optical control over dithionite-mediated chemical redox reactions. , 2019, Faraday discussions.

[75]  Jeremy J. Baumberg,et al.  Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds , 2015, Nano letters.

[76]  Hangqi Zhao,et al.  Quantifying hot carrier and thermal contributions in plasmonic photocatalysis , 2018, Science.

[77]  A. Baldi,et al.  Simple experimental procedures to discern photothermal processes in plasmon-driven chemistry , 2020, 2001.08402.

[78]  H. Freund,et al.  Photochemistry on metal nanoparticles. , 2006, Chemical reviews.

[79]  Jie Liu,et al.  Confirming nonthermal plasmonic effects enhance CO2 methanation on Rh/TiO2 catalysts , 2019, Nano Research.

[80]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[81]  O. G. Martynenko,et al.  Convective heat transfer , 1989 .

[82]  P. J. Hoopes,et al.  Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[83]  C. Felser,et al.  Cover Picture: Discovery of Elusive K 4 O 6 , a Compound Stabilized by Configurational Entropy of Polarons (Angew. Chem. Int. Ed. 1/2019) , 2019, Angewandte Chemie International Edition.

[84]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[85]  J. Dionne,et al.  Hot-Carrier-Mediated Photon Upconversion in Metal-Decorated Quantum Wells. , 2017, Nano letters.

[86]  Arnaud Travert,et al.  Effective bulk and surface temperatures of the catalyst bed of FT-IR cells used for in situ and operando studies. , 2013, Physical chemistry chemical physics : PCCP.

[87]  Nathan S. Lewis,et al.  Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates , 2014 .

[88]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[89]  Y. Sivan,et al.  “Hot” electrons in metallic nanostructures—non-thermal carriers or heating? , 2018, Light: Science & Applications.

[90]  P. Nordlander,et al.  Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. , 2014, Journal of the American Chemical Society.

[91]  Huaiyong Zhu,et al.  Direct photocatalysis of supported metal nanostructures for organic synthesis , 2017 .

[92]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Bin Zhao,et al.  Heterolytic dissociative adsorption state of dihydrogen favored by interfacial defects , 2018 .

[94]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[95]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[96]  Jingang Wang,et al.  Photocatalytic Reversible Reactions Driven by Localized Surface Plasmon Resonance , 2019, Catalysts.

[97]  Jaeyoung Heo,et al.  Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. , 2018, Nano letters.

[98]  W. Xie,et al.  Harvesting hot electrons on Au nanoparticle monolayer by efficient compensation of holes , 2019, Applied Materials Today.

[99]  H. Freund,et al.  Nanoparticles for heterogeneous catalysis: new mechanistic insights. , 2013, Accounts of chemical research.

[100]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[101]  A. Kildishev,et al.  Temperature-Dependent Optical Properties of Single Crystalline and Polycrystalline Silver Thin Films , 2017 .

[102]  R. Hochstrasser,et al.  Temperature-dependent coupling of low frequency adsorbate vibrations to metal substrate electrons , 1996 .

[103]  Richard M. Osgood,et al.  Direct Observation of the Local-Field-Enhanced Surface Photochemical Reactions , 1983 .

[104]  Stephan Link,et al.  Optical characterization of single plasmonic nanoparticles. , 2015, Chemical Society reviews.

[105]  A. Kildishev,et al.  Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis , 2016 .

[106]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[107]  R. Frontiera,et al.  Toward a mechanistic understanding of plasmon-mediated photocatalysis , 2018, Nanophotonics.

[108]  J. Dionne,et al.  Photon upconversion with hot carriers in plasmonic systems , 2015, 1501.04159.

[109]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[110]  M. Moskovits The case for plasmon-derived hot carrier devices. , 2015, Nature nanotechnology.

[111]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[112]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[113]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.