The innate immune protein calprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction

[1]  J. Suzich,et al.  Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections , 2016, Science Translational Medicine.

[2]  P. Dorrestein,et al.  Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction , 2015, The ISME Journal.

[3]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..

[4]  Elizabeth M. Nolan,et al.  Human Calprotectin Is an Iron-Sequestering Host-Defense Protein , 2015, Nature chemical biology.

[5]  L. Lynd,et al.  Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model , 2015, Journal of bacteriology.

[6]  Jace W. Jones,et al.  Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa , 2015, Journal of bacteriology.

[7]  P. Dorrestein,et al.  Mass Spectrometry Analysis of Pseudomonas aeruginosa Treated with Azithromycin , 2015, Journal of The American Society for Mass Spectrometry.

[8]  Eric P. Skaar,et al.  Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili , 2015, PLoS pathogens.

[9]  D. Leduc,et al.  Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity , 2014, Nature Communications.

[10]  R. Ryan,et al.  Polybacterial human disease: the ills of social networking , 2014, Trends in microbiology.

[11]  Kamil Jurowski,et al.  A standard sample preparation and calibration procedure for imaging zinc and magnesium in rats' brain tissue by laser ablation-inductively coupled plasma-time of flight-mass spectrometry , 2014 .

[12]  A. Matusch,et al.  Bioimaging mass spectrometry of trace elements - recent advance and applications of LA-ICP-MS: A review. , 2014, Analytica chimica acta.

[13]  Eric P. Skaar,et al.  Advanced mass spectrometry technologies for the study of microbial pathogenesis. , 2014, Current opinion in microbiology.

[14]  Angela T. Nguyen,et al.  Adaptation of Iron Homeostasis Pathways by a Pseudomonas aeruginosa Pyoverdine Mutant in the Cystic Fibrosis Lung , 2014, Journal of bacteriology.

[15]  C. Di Serio,et al.  Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis Airways Influences Virulence of Staphylococcus aureus In Vitro and Murine Models of Co-Infection , 2014, PloS one.

[16]  G. Mitchell,et al.  Interspecific Small Molecule Interactions between Clinical Isolates of Pseudomonas aeruginosa and Staphylococcus aureus from Adult Cystic Fibrosis Patients , 2014, PloS one.

[17]  Catherine A. Wakeman,et al.  Differential Activation of Staphylococcus aureus Heme Detoxification Machinery by Heme Analogues , 2014, Journal of bacteriology.

[18]  R. Nijland,et al.  Neutrophils versus Staphylococcus aureus: a biological tug of war. , 2013, Annual review of microbiology.

[19]  P. Dorrestein,et al.  Interspecies Interactions Stimulate Diversification of the Streptomyces coelicolor Secreted Metabolome , 2013, mBio.

[20]  Richard M. Caprioli,et al.  MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese , 2013, Infection and Immunity.

[21]  Eric P. Skaar,et al.  Iron in infection and immunity. , 2013, Cell host & microbe.

[22]  S. Hultgren,et al.  Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. , 2013, Cold Spring Harbor perspectives in medicine.

[23]  P. Fey,et al.  Use of Microfluidic Technology To Analyze Gene Expression during Staphylococcus aureus Biofilm Formation Reveals Distinct Physiological Niches , 2013, Applied and Environmental Microbiology.

[24]  O. Stojadinović,et al.  Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection , 2013, PloS one.

[25]  Eric P. Skaar,et al.  Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens , 2013, Proceedings of the National Academy of Sciences.

[26]  Kenneth W. Bayles,et al.  A Genetic Resource for Rapid and Comprehensive Phenotype Screening of Nonessential Staphylococcus aureus Genes , 2013, mBio.

[27]  Richard M Caprioli,et al.  Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. , 2013, Chemical reviews.

[28]  Hans C. Bernstein,et al.  Iron induces bimodal population development by Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[29]  A. Schramm,et al.  Fluorescence in situ hybridization (FISH) detection of nitrite reductase transcripts (nirS mRNA) in Pseudomonas stutzeri biofilms relative to a microscale oxygen gradient. , 2012, Systematic and applied microbiology.

[30]  Eric P. Skaar,et al.  Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration , 2012, PLoS pathogens.

[31]  Nuno Bandeira,et al.  Interkingdom metabolic transformations captured by microbial imaging mass spectrometry , 2012, Proceedings of the National Academy of Sciences.

[32]  Pieter C. Dorrestein,et al.  Primer on Agar-Based Microbial Imaging Mass Spectrometry , 2012, Journal of bacteriology.

[33]  Eric P. Skaar,et al.  Nutritional immunity: transition metals at the pathogen–host interface , 2012, Nature Reviews Microbiology.

[34]  B. Peters,et al.  Polymicrobial Interactions: Impact on Pathogenesis and Human Disease , 2012, Clinical Microbiology Reviews.

[35]  Eric P. Skaar,et al.  Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. , 2011, Cell host & microbe.

[36]  R. Caprioli,et al.  Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. , 2011, Analytical chemistry.

[37]  S. McColley,et al.  Clinical Significance of Microbial Infection and Adaptation in Cystic Fibrosis , 2011, Clinical Microbiology Reviews.

[38]  Blaise R. Boles,et al.  The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis. , 2010, Journal of visualized experiments : JoVE.

[39]  P. Cornelis,et al.  The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. , 2010, Microbiology.

[40]  Eric P. Skaar,et al.  Inactivation of Phospholipase D Diminishes Acinetobacter baumannii Pathogenesis , 2010, Infection and Immunity.

[41]  J. Gaddy,et al.  The Acinetobacter baumannii 19606 OmpA Protein Plays a Role in Biofilm Formation on Abiotic Surfaces and in the Interaction of This Pathogen with Eukaryotic Cells , 2009, Infection and Immunity.

[42]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[43]  J. Emerson,et al.  Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. , 2009, The Journal of pediatrics.

[44]  Roberto Kolter,et al.  Control of cell fate by the formation of an architecturally complex bacterial community. , 2008, Genes & development.

[45]  Eric P. Skaar,et al.  Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses , 2008, Science.

[46]  David A. D'Argenio,et al.  Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa , 2006, Proceedings of the National Academy of Sciences.

[47]  Thomas Bell,et al.  Character Displacement Promotes Cooperation in Bacterial Biofilms , 2006, Current Biology.

[48]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Kolter,et al.  Microbial sciences: The superficial life of microbes , 2006, Nature.

[50]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[51]  E. Greenberg,et al.  Iron and Pseudomonas aeruginosa biofilm formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Whiteley,et al.  Staphylococcus aureus Serves as an Iron Source for Pseudomonas aeruginosa during In Vivo Coculture , 2005, Journal of bacteriology.

[53]  Blaise R. Boles,et al.  Self-generated diversity produces "insurance effects" in biofilm communities. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Gottesman,et al.  Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Andrey A Mironov,et al.  Comparative genomics of bacterial zinc regulons: Enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  K. Poole,et al.  Pyoverdine-Mediated Regulation of FpvA Synthesis in Pseudomonas aeruginosa: Involvement of a Probable Extracytoplasmic-Function Sigma Factor, FpvI , 2003, Journal of bacteriology.

[57]  W. Nacken,et al.  Loss of S100A9 (MRP14) Results in Reduced Interleukin-8-Induced CD11b Surface Expression, a Polarized Microfilament System, and Diminished Responsiveness to Chemoattractants In Vitro , 2003, Molecular and Cellular Biology.

[58]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[59]  R. Caprioli,et al.  Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. , 1997, Analytical chemistry.

[60]  M. Fagerhol,et al.  Calprotectin as a marker of inflammation in cystic fibrosis. , 1996, Archives of disease in childhood.

[61]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[62]  M. Turakhia,et al.  Activity of Pseudomonas aeruginosa in biofilms: Effect of calcium , 1989, Biotechnology and bioengineering.

[63]  T. Karagiannis,et al.  Qualitative and Quantitative Analysis of Histone Deacetylases in Kidney Tissue Sections. , 2016, Methods in molecular biology.

[64]  I. Schalk,et al.  Pyoverdine and pyochelin measurements. , 2014, Methods in molecular biology.

[65]  M. Parsek,et al.  Quorum sensing and microbial biofilms. , 2008, Current topics in microbiology and immunology.

[66]  Adeline R. Whitney,et al.  Insights into Mechanisms Used by Staphylococcus aureus to Avoid Destruction by Human Neutrophils , 2005 .