Mars Exploration Rover mission

[1] In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

[1]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[2]  Per Nornberg,et al.  Magnetic Properties Experiments on the Mars Exploration Rover mission , 2003 .

[3]  Brian Portock,et al.  2003 Mars Exploration Rover orbit determination using deltaVLBI data , 2002 .

[4]  Raymond E. Arvidson,et al.  FIDO prototype Mars rover field trials, Black Rock Summit, Nevada, as test of the ability of robotic mobility systems to conduct field science , 2002 .

[5]  R. C. Ewell,et al.  The performance of gallium arsenide/germanium solar cells at the Martian surface , 2004 .

[6]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[7]  A. Seiff,et al.  Structure of the atmosphere of Mars in summer at mid-latitudes , 1977 .

[8]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[9]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[10]  Phillip P. Jenkins,et al.  Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder , 2000 .

[11]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[12]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[13]  Raymond E. Arvidson,et al.  Physical properties and localization investigations associated with the 2003 Mars Exploration rovers , 2003 .

[14]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[15]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[16]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[17]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .