Relativistic Quantum Bayesian Game Under Decoherence

We study how Unruh effect and quantum noise affect the payoffs of a quantum conflicting interest Bayesian game. Three types of noisy channels, i.e., the amplitude damping channel, the depolarizing channel and the phase damping channel, are employed to model the decoherence processes. We find that Unruh effect weakens the payoffs in the quantum game and the quantum payoffs are lower than the classical payoffs when the acceleration parameter is large enough. However, the variation of the payoffs with the decoherence parameter is not always monotonic. Sometimes more decoherence may lead to higher payoffs.

[1]  J. León,et al.  Quantum entanglement produced in the formation of a black hole , 2010, 1007.2858.

[2]  Piotr Frąckiewicz,et al.  N-person quantum Russian roulette , 2013, 1303.0155.

[3]  M. K. Khan,et al.  Open quantum systems in noninertial frames , 2010, 1010.5395.

[4]  Piotr Frackiewicz,et al.  Quantum Information Approach to the Ultimatum Game , 2011, ArXiv.

[5]  Ramón Alonso-Sanz,et al.  A quantum battle of the sexes cellular automaton , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Jing Jiliang Multipartite entanglement of fermionic systems in noninertial frames , 2011 .

[7]  Gerardo Adesso,et al.  Optimal quantum estimation of the Unruh-Hawking effect. , 2010, Physical review letters.

[8]  Piotr Frackiewicz A new quantum scheme for normal-form games , 2015, Quantum Inf. Process..

[9]  Derek Abbott,et al.  Quantum Matching Pennies Game , 2008, 0807.3599.

[10]  Piotr Frackiewicz Quantum signaling game , 2014, ArXiv.

[11]  Ramón Alonso-Sanz,et al.  On a three-parameter quantum battle of the sexes cellular automaton , 2013, Quantum Inf. Process..

[12]  Heng Fan,et al.  Quantum metrology and estimation of Unruh effect , 2014, Scientific Reports.

[13]  Dariusz Kurzyk,et al.  Decoherence effects in the quantum qubit flip game using Markovian approximation , 2013, Quantum Inf. Process..

[14]  Zehua Tian,et al.  Nonlocality and Entanglement via the Unruh effect , 2012, 1301.5987.

[15]  W. Unruh Notes on black-hole evaporation , 1976 .

[16]  David Edward Bruschi,et al.  Unruh effect in quantum information beyond the single-mode approximation , 2010, 1007.4670.

[17]  Piotr Frąckiewicz,et al.  On signaling games with quantum chance move , 2015 .

[18]  Ramón Alonso-Sanz A quantum prisoner's dilemma cellular automaton , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Jieci Wang,et al.  Quantum decoherence in noninertial frames , 2010, 1005.2865.

[20]  M. K. Khan,et al.  Relativistic quantum games in noninertial frames , 2011, 1102.1351.

[21]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[22]  Haozhen Situ A quantum approach to play asymmetric coordination games , 2014, Quantum Inf. Process..

[23]  Derek Abbott,et al.  A probabilistic approach to quantum Bayesian games of incomplete information , 2012, Quantum Inf. Process..

[24]  E. Diamanti,et al.  Nonlocality and conflicting interest games. , 2014, Physical review letters.

[25]  D. Abbott,et al.  Constructing quantum games from a system of Bell's inequalities , 2009, 0909.3369.

[26]  P. Alsing,et al.  Entanglement of Dirac fields in noninertial frames , 2006, quant-ph/0603269.

[27]  Jiliang Jing,et al.  System-environment dynamics of X-type states in noninertial frames , 2011, 1105.1216.

[28]  Haozhen Situ,et al.  Quantum Bayesian game with symmetric and asymmetric information , 2015, Quantum Inf. Process..

[29]  Heng Fan,et al.  Relativistic Quantum Metrology in Open System Dynamics , 2015, Scientific Reports.

[30]  M. K. Khan,et al.  Decoherence Effects on Multiplayer Cooperative Quantum Games , 2011, 1701.05342.

[31]  M. K. Khan,et al.  Quantum Stackelberg Duopoly in a Noninertial Frame , 2011, 1102.1353.

[32]  Roger B. Myerson,et al.  Game theory - Analysis of Conflict , 1991 .

[33]  M. Khalid Khan,et al.  Noisy relativistic quantum games in noninertial frames , 2013, Quantum Inf. Process..

[34]  Ramón Alonso-Sanz Variable entangling in a quantum prisoner’s dilemma cellular automaton , 2015, Quantum Inf. Process..

[35]  D. Abbott,et al.  Non-factorizable joint probabilities and evolutionarily stable strategies in the quantum prisoner's dilemma game , 2009, 0902.2889.