Maximum likelihood estimation of the polychoric correlation coefficient

[1]  U. Olsson On The Robustness Of Factor Analysis Against Crude Classification Of The Observations. , 1979, Multivariate behavioral research.

[2]  J. K. Benedetti,et al.  On the mean and variance of the tetrachoric correlation coefficient , 1977 .

[3]  H. Wainer,et al.  Three steps towards robust regression , 1976 .

[4]  E. O. Martinson,et al.  Algorithm AS 87: Calculation of the Polychoric Estimate of Correlation in Contingency Tables , 1975 .

[5]  D. B. Kirk On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient , 1973 .

[6]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[7]  M. A. Hamdan,et al.  Maximum likelihood and some other asymptotically efficient estimators of correlation in two way contingency tables , 1972 .

[8]  On the polychoric series method for estimation of ρ in contingency tables , 1971 .

[9]  A comparison of computer routines for the calculation of the tetrachoric correlation coefficient , 1971 .

[10]  M. A. Hamdan The equivalence of tetrachoric and maximum likelihood estimates of p in 2 × 2 tables , 1970 .

[11]  M. A. Hamdan On the structure of the tetrachoric series , 1968 .

[12]  H. O. Lancaster,et al.  Estimation of the correlation coefficient in contingency tables with possibly nonmetrical characters , 1964 .

[13]  G. M. Tallis The Maximum Likelihood Estimation of Correlation from Contingency Tables , 1962 .

[14]  Karl Pearson,et al.  ON POLYCHORIC COEFFICIENTS OF CORRELATION , 1922 .

[15]  A. Ritchie-Scott THE CORRELATION COEFFICIENT OF A POLYCHORIC TABLE , 1918 .

[16]  Karl Pearson,et al.  Mathematical contributions to the theory of evolution. VIII. On the correlation of characters not quantitatively measurable , 1900, Proceedings of the Royal Society of London.