Optimization of Magnetic Properties of Magnetic Microwires by Post-Processing

The influence of post-processing conditions on the magnetic properties of amorphous and nanocrystalline microwires has been thoroughly analyzed, paying attention to the influence of magnetoelastic, induced and magnetocrystalline anisotropies on the hysteresis loops of Fe-, Ni-, and Co-rich microwires. We showed that magnetic properties of glass-coated microwires can be tuned by the selection of appropriate chemical composition and geometry in as-prepared state or further considerably modified by appropriate post-processing, which consists of either annealing or glass-coated removal. Furthermore, stress-annealing or Joule heating can further effectively modify the magnetic properties of amorphous magnetic microwires owing to induced magnetic anisotropy. Devitrification of microwires can be useful for either magnetic softening or magnetic hardening of the microwires. Depending on the chemical composition of the metallic nucleus and on structural features (grain size, precipitating phases), nanocrystalline microwires can exhibit either soft magnetic properties or semi-hard magnetic properties. We demonstrated that the microwires with coercivities from 1 A/m to 40 kA/m can be prepared.

[1]  V. Zhukova,et al.  Stress-induced magnetic anisotropy enabling engineering of magnetic softness of Fe-rich amorphous microwires , 2020 .

[2]  V. Zhukova,et al.  Controlling the domain wall dynamics in Fe-, Ni- and Co-based magnetic microwires , 2020, Journal of Alloys and Compounds.

[3]  V. Zhukova,et al.  Route of magnetoimpedance and domain walls dynamics optimization in Co-based microwires , 2020 .

[4]  V. Zhukova,et al.  Soft magnetic microwires for sensor applications , 2020 .

[5]  Mihail Ipatov,et al.  Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors , 2020, Sensors.

[6]  V. Zhukova,et al.  Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires , 2020, Applied Sciences.

[7]  V. Zhukova,et al.  Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires , 2020 .

[8]  Yoshinobu Honkura,et al.  The Development of ASIC Type GSR Sensor Driven by GHz Pulse Current † , 2020, Sensors.

[9]  V. Zhukova,et al.  Giant magnetoimpedance in rapidly quenched materials , 2020 .

[10]  V. Zhukova,et al.  Engineering of magnetic properties and domain wall dynamics in Fe-Ni-based amorphous microwires by annealing , 2020 .

[11]  L. Panina,et al.  Hard Magnetic Properties of Co-Rich Microwires Crystallized by Current Annealing , 2020, IEEE Magnetics Letters.

[12]  Paula Corte-Leon,et al.  Development of Magnetic Microwires for Magnetic Sensor Applications , 2019, Sensors.

[13]  V. Zhukova,et al.  Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy , 2019, Scientific Reports.

[14]  V. Zhukova,et al.  Stress dependence of the magnetic properties of glass-coated amorphous microwires , 2019, Journal of Alloys and Compounds.

[15]  V. Zhukova,et al.  Engineering of magnetic properties of Co-rich microwires by joule heating , 2019, Intermetallics.

[16]  V. Zhukova,et al.  Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating , 2018, IEEE Transactions on Magnetics.

[17]  V. Zhukova,et al.  Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating , 2019, 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama).

[18]  V. Zhukova,et al.  Magnetic hardening of Fe-Pt and Fe-Pt- M (M=B, Si) microwires , 2018 .

[19]  V. Zhukova,et al.  Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing , 2018, Scientific Reports.

[20]  V. Zhukova,et al.  Tailoring of magnetic properties of Heusler-type glass-coated microwires by annealing , 2018 .

[21]  V. Zhukova,et al.  Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing , 2018 .

[22]  V. Zhukova,et al.  AC-current-induced magnetization switching in amorphous microwires , 2018 .

[23]  S. Kaloshkin,et al.  Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires , 2017 .

[24]  A. Makino,et al.  Effects of minor precipitation of large size crystals on magnetic properties of Fe-Co-Si-B-P-Cu alloy , 2017 .

[25]  S. Baranov,et al.  Technology, Preparation and Properties of the Cast Glass-Coated Magnetic Microwires , 2017 .

[26]  V. Zhukova,et al.  Correlation of Crystalline Structure with Magnetic and Transport Properties of Glass-Coated Microwires , 2017 .

[27]  A. Zhukov High Performance Soft Magnetic Materials , 2017 .

[28]  V. Zhukova,et al.  Preparation and Characterization of Fe-Pt and Fe-Pt-(B, Si) Microwires , 2016, IEEE Magnetics Letters.

[29]  S. Kaloshkin,et al.  Engineering of magnetic properties and GMI effect in Co-rich amorphous microwires , 2016 .

[30]  V. Zhukova,et al.  Engineering of Magnetic Softness and Magnetoimpedance in Fe-Rich Microwires by Nanocrystallization , 2016 .

[31]  L. Cagnon,et al.  Nucleation, imaging, and motion of magnetic domain walls in cylindrical nanowires , 2016, 1603.07240.

[32]  V. Zhukova,et al.  Effect of annealing on magnetic properties of nanocrystalline Hitperm-type glass-coated microwires , 2016 .

[33]  V. Zhukova,et al.  Magnetostriction investigation of soft magnetic microwires , 2016 .

[34]  S. Kaloshkin,et al.  Effect of annealing on magnetic properties and magnetostriction coefficient of Fe–Ni-based amorphous microwires , 2015 .

[35]  Michiharu Yamamoto,et al.  Recent Advances of Amorphous Wire CMOS IC Magneto-Impedance Sensors: Innovative High-Performance Micromagnetic Sensor Chip , 2015, J. Sensors.

[36]  V. Zhukova,et al.  Manipulation of magnetic properties of glass-coated microwires by annealing , 2015 .

[37]  V. Zhukova,et al.  Tailoring the High-Frequency Giant Magnetoimpedance Effect of Amorphous Co-Rich Microwires , 2015, IEEE Magnetics Letters.

[38]  V. Zhukova,et al.  Effect of Temperature and Time of Stress Annealing on Magnetic Properties of Amorphous Microwires , 2015 .

[39]  V. Zhukova,et al.  Advances in Giant Magnetoimpedance of Materials , 2015 .

[40]  Valentina Zhukova,et al.  Magnetostriction of Co–Fe-Based Amorphous Soft Magnetic Microwires , 2015, Journal of Electronic Materials.

[41]  V. Zhukova,et al.  Effect of Nanocrystallization on Magnetic Properties and GMI Effect of Fe-rich Microwires , 2014, IEEE Transactions on Magnetics.

[42]  V. Zhukova,et al.  Tuning of Magnetic Properties and GMI Effect of Co-Based Amorphous Microwires by Annealing , 2014, Journal of Electronic Materials.

[43]  V. Zhukova,et al.  Effect of Nanocrystallization on Magnetic Properties and GMI Effect of Microwires , 2014 .

[44]  V. Zhukova,et al.  Fast magnetization switching in Fe-rich amorphous microwires: Effect of magnetoelastic anisotropy and role of defects , 2014 .

[45]  V. Zhukova,et al.  Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires , 2013 .

[46]  E. Snoeck,et al.  Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder , 2013, Nano letters.

[47]  V. Zhukova,et al.  Magnetic Properties and Domain Wall Propagation in Micrometric Amorphous Microwires , 2013 .

[48]  B. Dufay,et al.  Development of a High Sensitivity Giant Magneto-Impedance Magnetometer: Comparison With a Commercial Flux-Gate , 2013, IEEE Transactions on Magnetics.

[49]  V. Zhukova,et al.  Magnetoelastic contribution in domain wall dynamics of amorphous microwires , 2012 .

[50]  Victor Bellitto,et al.  Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale , 2012 .

[51]  V. Zhukova,et al.  Domain wall propagation in micrometric wires: Limits of single domain wall regime , 2012 .

[52]  V. Zhukova,et al.  Magnetoelastic Contribution in Domain-Wall Dynamics of Magnetically Bistable Microwires , 2011, IEEE Transactions on Magnetics.

[53]  T. Uchiyama,et al.  Measurement of Spontaneous Oscillatory Magnetic Field of Guinea-Pig Smooth Muscle Preparation Using Pico-Tesla Resolution Amorphous Wire Magneto-Impedance Sensor , 2011, IEEE Transactions on Magnetics.

[54]  H. Chiriac,et al.  Accurate measurement of domain wall velocity in amorphous microwires, submicron wires, and nanowires. , 2011, The Review of scientific instruments.

[55]  H. Chiriac,et al.  Domain wall velocity in submicron amorphous wires , 2011 .

[56]  V. Zhukova,et al.  Tailoring of Magnetic Properties of Magnetostatically-Coupled Glass-Covered Magnetic Microwires , 2011 .

[57]  C. Rettner,et al.  Dependence of field driven domain wall velocity on cross-sectional area in Ni65Fe20Co15 nanowires , 2010 .

[58]  Valentina Zhukova,et al.  Recent advances in studies of magnetically soft amorphous microwires , 2009 .

[59]  Marina Díaz-Michelena,et al.  Small Magnetic Sensors for Space Applications , 2009, Sensors.

[60]  A. Zhukov,et al.  Domain Wall Propagation in Thin Magnetic Wires , 2008, IEEE Transactions on Magnetics.

[61]  H. Chiriac,et al.  Interdomain wall in amorphous glass-coated microwires , 2007 .

[62]  Valentina Zhukova,et al.  Development of thin microwires with low Curie temperature for temperature sensors applications , 2007 .

[63]  V. Zhukova,et al.  Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy , 2006 .

[64]  J. Lenz,et al.  Magnetic sensors and their applications , 2006, IEEE Sensors Journal.

[65]  M. Vázquez,et al.  Optimized giant magnetoimpedance effect in amorphous and nanocrystalline materials , 2006 .

[66]  H. Chiriac,et al.  Internal stress distribution in DC joule-heated amorphous glass-covered microwires , 2006 .

[67]  V. Zhukova,et al.  Magnetic domain structure of wires studied by using the magneto-optical indicator film method , 2005 .

[68]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[69]  V. Zhukova,et al.  Recent research on magnetic properties of glass-coated microwires , 2005 .

[70]  V. Zhukova,et al.  Magnetoresistance in thin wires with granular structure , 2005 .

[71]  K. Mohri,et al.  Off-diagonal impedance in amorphous wires and its application to linear magnetic sensors , 2004, IEEE Transactions on Magnetics.

[72]  D. Jiles Recent advances and future directions in magnetic materials , 2003 .

[73]  V. Zhukova,et al.  Tailoring of magnetic anisotropy in Fe-rich glass-coated magnetic microwires by thermo-mechanical annealing , 2003 .

[74]  Valentina Zhukova,et al.  Switching field fluctuations in a glass-coated Fe-rich amorphous microwire , 2002 .

[75]  V. Zhukova,et al.  Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires , 2002 .

[76]  A. Zhukov,et al.  Giant magneto-impedance effect in CoMnSiB amorphous microwires , 2001 .

[77]  V. Zhukova,et al.  Tailoring of magnetic properties of glass-coated microwires by current annealing , 2001 .

[78]  A. Zhukov,et al.  Magnetoelastic sensor based on GMI of amorphous microwire , 2001 .

[79]  Horia Chiriac,et al.  Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire , 2000 .

[80]  J. M. Blanco,et al.  Microwires coated by glass: A new family of soft and hard magnetic materials , 2000 .

[81]  Pavel Ripka,et al.  Sensors based on soft magnetic materials Panel discussion , 2000 .

[82]  A. F. Prokoshin,et al.  Residual quenching stresses in glass-coated amorphous ferromagnetic microwires , 2000 .

[83]  Pilar Marín,et al.  Glass-coated Co-rich amorphous microwires with enhanced permeability , 2000 .

[84]  V. Zhukova,et al.  Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0≤x≤1.6) microwires , 1999 .

[85]  A. Zhukov,et al.  Ferromagnetic resonance, magnetic behaviour and structure of Fe-based glass-coated microwires , 1999 .

[86]  F. Humphrey,et al.  Domain strucfure of chemically thinned Fe-Si-B amorphous wires , 1999, IEEE International Magnetics Conference.

[87]  A. Zhukov,et al.  Stress dependence of the switching field in Co-rich amorphous microwires , 1999 .

[88]  J. M. Blanco,et al.  The stress dependence of the switching field in glass-coated amorphous microwires , 1998 .

[89]  F. Humphrey,et al.  Effect of Stress on the Bamboo Domains and Magnetization Process of Cosib Amorphous Wire , 1997, 7th Joint MMM-Intermag Conference. Abstracts (Cat. No.98CH36275).

[90]  A. Lagarkov,et al.  Possible origin for the bamboo domain structure in Co-rich amorphous wire , 1997 .

[91]  G. Herzer,et al.  AMORPHOUS AND NANOCRYSTALLINE SOFT MAGNETS , 1997 .

[92]  Dang,et al.  Relation between anomalous magnetovolume behavior and magnetic frustration in Invar alloys. , 1996, Physical review. B, Condensed matter.

[93]  Chiriac,et al.  Internal stress distribution in glass-covered amorphous magnetic wires. , 1995, Physical review. B, Condensed matter.

[94]  Manuel Vazquez,et al.  The magnetization reversal process in amorphous wires , 1995 .

[95]  S. Ueno,et al.  Preparation and properties of amorphous wires , 1995 .

[96]  L. V. Panina,et al.  Magneto‐impedance effect in amorphous wires , 1994 .

[97]  Ami E. Berkowitz,et al.  GIANT MAGNETIC FIELD DEPENDENT IMPEDANCE OF AMORPHOUS FECOSIB WIRE , 1994 .

[98]  A. Zhukov The remagnetization process of bistable amorphous alloys , 1993 .

[99]  M. Wun-Fogle,et al.  Magnetoelastic anisotropy in amorphous wires due to quenching , 1991 .

[100]  G. E. Fish,et al.  Soft magnetic materials , 1990, Proc. IEEE.

[101]  F. Humphrey,et al.  Large Barkhausen and Matteucci Effects in FeCoSiB, FeCrSiB and FeNiSiB amorphous wires , 1990, International Conference on Magnetics.

[102]  K. Mohri,et al.  Magnetostriction Measurements for Amorphous Wires , 1989, IEEE Translation Journal on Magnetics in Japan.

[103]  Nielsen,et al.  Temperature, stress, and structural-relaxation dependence of the magnetostriction in (Co0.94/BFe0.06)75/BSi15B10 glasses. , 1987, Physical review. B, Condensed matter.

[104]  T. Egami,et al.  Magnetic and structural effects of anelastic deformation of an amorphous alloy , 1985 .

[105]  K. Mohri,et al.  Domain wall induced anisotropy during annealing in amorphous ribbons , 1984 .

[106]  O. Kohmoto,et al.  Amorphous FeCo‐SiB alloys with zero magnetostriction , 1981 .

[107]  P. Gaskell REVIEW ARTICLE: On the structure of simple inorganic amorphous solids , 1979 .

[108]  J. Becker A new mechanism for magnetic annealing in amorphous metals , 1978 .

[109]  F. Luborsky,et al.  Magnetic moments and curie temperatures of (Fe, Ni) 80 (P, B) 20 amorphous alloys , 1977 .

[110]  F. Luborsky,et al.  Magnetic anneal anisotropy in amorphous alloys , 1977 .

[111]  M. Nagano,et al.  Mechanical Properties of Amorphous Fe 80 P 16 C 3 B 1 Filament Produced by Glass-Coated Melt Spinning , 1977 .

[112]  L. Kraus,et al.  Ferromagnetic resonance in amorphous alloys prepared by rapid quenching from the melt , 1976 .

[113]  E. P. Harrison,et al.  Electrical Properties of Wires of High Permeability , 1935, Nature.

[114]  Lewi Tonks,et al.  Propagation of Large Barkhausen Discontinuities. II , 1931 .