Stellar metallicities beyond the Local Group: the potential of J-band spectroscopy with extremely large telescopes

We present simulated J-band spectroscopy of red giants and supergiants with a 42m European Extremely Large Telescope (E-ELT), using tools developed toward the EAGLE Phase A instrument study. The simulated spectra are used to demonstrate the validity of the 1.15-1.22 micron region to recover accurate stellar metallicities from Solar and metal-poor (one tenth Solar) spectral templates. From tests at spectral resolving powers of four and ten thousand, we require continuum signal-to-noise ratios in excess of 50 (per two-pixel resolution element) to recover the input metallicity to within 0.1 dex. We highlight the potential of direct estimates of stellar metallicites (over the range -1<[Fe/H]<0) of red giants with the E-ELT, reaching out to distances of ~5 Mpc for stars near the tip of the red giant branch. The same simulations are also used to illustrate the potential for quantitative spectroscopy of red supergiants beyond the Local Volume to tens of Mpc. Calcium triplet observations in the I-band are also simulated to provide a comparison with contemporary techniques. Assuming the EAGLE instrument parameters and simulated performances from adaptive optics, the J-band method is more sensitive in terms of recovering metallicity estimates for a given target. This appears very promising for ELT studies of red giants and supergiants, offering a direct metallicity tracer at a wavelength which is less afffected by extinction than shortward diagnostics and, via adaptive optics, with better image quality.

[1]  Donald F. Figer,et al.  The potential of red supergiants as extragalactic abundance probes at low spectral resolution , 2010, 1005.1008.

[2]  T. Fusco,et al.  Simulating the physics and mass assembly of distant galaxies out to z∼ 6 with the E-ELT , 2009, 0911.0729.

[3]  J. Cuby,et al.  EAGLE Spectroscopy of Resolved Stellar Populations Beyond the Local Group , 2009, Proceedings of the International Astronomical Union.

[4]  G. Carraro,et al.  EXTRAGALACTIC CHEMICAL ABUNDANCES: DO H ii REGIONS AND YOUNG STARS TELL THE SAME STORY? THE CASE OF THE SPIRAL GALAXY NGC 300 , 2009, 0905.2791.

[5]  R. Kudritzki,et al.  CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS , 2009, 0902.2378.

[6]  J. Conan,et al.  Tomographic reconstruction for wide-field adaptive optics systems: Fourier domain analysis and fundamental limitations. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  Wendy L. Freedman,et al.  Metallicity-corrected Tip of the Red Giant Branch Distance to NGC 4258 , 2008, 0808.2180.

[8]  T. Fusco,et al.  Coupling MOAO with integral field spectroscopy: specifications for the VLT and the E-ELT , 2008, 0808.1196.

[9]  R. Kudritzki,et al.  The Araucaria Project: The Local Group Galaxy WLM—Distance and Metallicity from Quantitative Spectroscopy of Blue Supergiants , 2008, 0805.3555.

[10]  R. Kudritzki,et al.  The Araucaria Project: VLT-spectroscopy of blue massive stars in NGC 55 , 2008, 0805.2953.

[11]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[12]  Universidad de Concepcion,et al.  Quantitative Spectroscopy of 24 A Supergiants in the Sculptor Galaxy NGC 300: Flux-weighted Gravity-Luminosity Relationship, Metallicity, and Metallicity Gradient , 2008, 0803.3654.

[13]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[14]  Marc S. Sarazin,et al.  Seeing is Believing: New Facts about the Evolution of Seeing on Paranal , 2008 .

[15]  Amina Helmi,et al.  Analysis and calibration of CaII triplet spectroscopy of red giant branch stars from VLT/FLAMES observations , 2007, 0710.0798.

[16]  Edinburgh,et al.  The VLT-FLAMES survey of massive stars: evolution of surface N abundances and effective temperature scales in the Galaxy and Magellanic Clouds , 2007, 0706.1731.

[17]  L. Infante,et al.  The ACS Fornax Cluster Survey. I. Introduction to the Survey and Data Reduction Procedures , 2007, astro-ph/0702320.

[18]  P. Harding,et al.  The Stellar Populations in the Outer Regions of M33. II. Deep ACS Imaging , 2007 .

[19]  E. Gendron,et al.  The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy - principles and performance on an 8-m telescope , 2006, astro-ph/0612538.

[20]  R. Kudritzki,et al.  The ARAUCARIA Project: VLT-FORS Spectroscopy of Blue Supergiants in NGC 3109—Classifications, First Abundances, and Kinematics , 2006, astro-ph/0612114.

[21]  R. Kudritzki,et al.  The Araucaria Project: The Distance to the Sculptor Group Galaxy NGC 55 from a Newly Discovered Abundant Cepheid Population , 2006, astro-ph/0610595.

[22]  James D. Garnett,et al.  Performance evaluation and calibration issues of large format infrared hybrid active pixel sensors used for ground- and space-based astronomy , 2006 .

[23]  A. M. N. Ferguson,et al.  A Kinematically Selected, Metal-poor Stellar Halo in the Outskirts of M31 , 2006, astro-ph/0602604.

[24]  M. Haynes,et al.  Oxygen and Nitrogen in Leo A and GR 8 , 2005, astro-ph/0509678.

[25]  J. Bullock,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005, astro-ph/0506467.

[26]  R. Kudritzki,et al.  The Araucaria Project . Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC , 2005 .

[27]  Vanessa Hill,et al.  Two Distinct Ancient Components in the Sculptor Dwarf Spheroidal Galaxy: First Results from the Dwarf Abundances and Radial Velocities Team , 2004 .

[28]  J. Tonry,et al.  The ACS Virgo Cluster Survey. I. Introduction to the Survey , 2004, astro-ph/0404138.

[29]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[30]  Livia Origlia,et al.  High-Resolution Infrared Spectra of Bulge Globular Clusters: The Extreme Chemical Abundances of Terzan 4 and Terzan 5 , 2004, astro-ph/0402193.

[31]  R. Kudritzki,et al.  First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A , 2004, astro-ph/0401411.

[32]  R. Maiolino,et al.  Stellar and Gaseous Abundances in M82 , 2004, astro-ph/0401361.

[33]  Bernard J. Rauscher,et al.  Independent testing of JWST detector prototypes , 2004, SPIE Optics + Photonics.

[34]  E. Tolstoy,et al.  The effects of age on red giant metallicities derived from the near-infrared Ca II triplet , 2003, astro-ph/0309614.

[35]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[36]  Puragra Guhathakurta,et al.  New distances to galaxies in the Centaurus A group , 2002 .

[37]  R. Rich,et al.  High-Resolution Infrared Spectra of Bulge Globular Clusters: Liller 1 and NGC 6553 , 2001, astro-ph/0112104.

[38]  D. L. DePoy,et al.  An Accurate, Easy-To-Use Abundance Scale for Globular Clusters Based on 2.2 Micron Spectra of Giant Stars , 2001, astro-ph/0101275.

[39]  R. Kudritzki,et al.  Stellar Spectroscopy Far Beyond the Local Group , 2000, astro-ph/0012372.

[40]  Daniel Devost,et al.  The Ionized Gas in the Aftermath of a Starburst: The Case of NGC 1569 , 1997 .

[41]  Stefano Casertano,et al.  THE PHOTOMETRIC PERFORMANCE AND CALIBRATION OF WFPC2 , 1995 .

[42]  A. M. Fowler,et al.  Demonstration of an algorithm for read-noise reduction in infrared arrays , 1990 .

[43]  G. Rieke,et al.  Absolute calibration of photometry at 1 through 5 microns , 1985 .

[44]  Michael S. Bessell,et al.  UBVRI PHOTOMETRY II: THE COUSINS VRI SYSTEM, ITS TEMPERATURE AND ABSOLUTE FLUX CALIBRATION, AND RELEVANCE FOR TWO-DIMENSIONAL PHOTOMETRY. , 1979 .

[45]  Nuclear Instruments , 1957, Nature.