Static Classifier Selection with Interval Weights of Base Classifiers

The selection of classifiers is one of the important problems in the creation of an ensemble of classifiers. The paper presents the static selection in which a new method of calculating the weights of individual classifiers is used. The obtained weights can be interpreted in the context of the interval logic. It means that the particular weights will not be provided precisely but their lower and upper values will be used. A number of experiments have been carried out on several data sets from the UCI repository.

[1]  Ching Y. Suen,et al.  Building a new generation of handwriting recognition systems , 1993, Pattern Recognit. Lett..

[2]  Robert Sabourin,et al.  Dynamic selection approaches for multiple classifier systems , 2011, Neural Computing and Applications.

[3]  Fabio Roli,et al.  An approach to the automatic design of multiple classifier systems , 2001, Pattern Recognit. Lett..

[4]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[5]  Bogdan Trawinski,et al.  Selection of Heterogeneous Fuzzy Model Ensembles Using Self-adaptive Genetic Algorithms , 2011, New Generation Computing.

[6]  Robert Sabourin,et al.  Classifier ensembles optimization guided by population oracle , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[7]  Ethem Alpaydin,et al.  Incremental construction of classifier and discriminant ensembles , 2009, Inf. Sci..

[8]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Oscar Cordón,et al.  A Study on the Use of Multiobjective Genetic Algorithms for Classifier Selection in FURIA-based Fuzzy Multiclassifiers , 2012, Int. J. Comput. Intell. Syst..

[10]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[11]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Gian Luca Marcialis,et al.  A study on the performances of dynamic classifier selection based on local accuracy estimation , 2005, Pattern Recognit..

[13]  Bogdan Gabrys,et al.  Classifier selection for majority voting , 2005, Inf. Fusion.

[14]  Izabela Rejer Genetic Algorithms in EEG Feature Selection for the Classification of Movements of the Left and Right Hand , 2013, CORES.

[15]  Michal Wozniak,et al.  Method of classifier selection using the genetic approach , 2010, Expert Syst. J. Knowl. Eng..

[16]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[17]  W. H. Highleyman,et al.  The design and analysis of pattern recognition experiments , 1962 .

[18]  Josef Kittler,et al.  Sum Versus Vote Fusion in Multiple Classifier Systems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[20]  Boguslaw Cyganek One-Class Support Vector Ensembles for Image Segmentation and Classification , 2011, Journal of Mathematical Imaging and Vision.

[21]  Bartosz Krawczyk,et al.  Improved Adaptive Splitting and Selection: the Hybrid Training Method of a Classifier Based on a Feature Space Partitioning , 2014, Int. J. Neural Syst..

[22]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[23]  Vasile Palade,et al.  Multi-Classifier Systems: Review and a roadmap for developers , 2006, Int. J. Hybrid Intell. Syst..

[24]  Marek Kurzynski,et al.  A probabilistic model of classifier competence for dynamic ensemble selection , 2011, Pattern Recognit..

[25]  Michal Wozniak,et al.  Optimizing distributed computing systems for k-nearest neighbours classifiers - evolutionary approach , 2011, Log. J. IGPL.