Performance and local structure evolution of NbMoTaWV entropy-stabilized oxide thin films with variable oxygen content

[1]  C. Dong,et al.  The resistivity–temperature behavior of Al CoCrFeNi high-entropy alloy films , 2020 .

[2]  Chaur-Jeng Wang,et al.  Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings , 2019, Surface and Coatings Technology.

[3]  Chaur-Jeng Wang,et al.  High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films , 2019, Surface and Coatings Technology.

[4]  P. Mayrhofer,et al.  High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti , 2019, Vacuum.

[5]  Yan Long,et al.  A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties , 2019, Journal of Alloys and Compounds.

[6]  Yanhua Cui,et al.  A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance , 2019, Journal of Alloys and Compounds.

[7]  Dierk Raabe,et al.  Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes , 2018, Nature.

[8]  Christina M. Rost,et al.  Charge‐Induced Disorder Controls the Thermal Conductivity of Entropy‐Stabilized Oxides , 2018, Advanced materials.

[9]  L. An,et al.  A five-component entropy-stabilized fluorite oxide , 2018, Journal of the European Ceramic Society.

[10]  W. Chueh,et al.  The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting , 2018 .

[11]  Yuan Wu,et al.  Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering , 2018 .

[12]  Mikhail Feygenson,et al.  Chemical short-range orders and the induced structural transition in high-entropy alloys , 2018 .

[13]  C. Dong,et al.  Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model. , 2018, Inorganic chemistry.

[14]  Yang Wang,et al.  Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films , 2017 .

[15]  C. Dong,et al.  Composition range of semiconducting amorphous Fe-Si thin films interpreted using a cluster-based short-range-order model , 2017 .

[16]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[17]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[18]  C. Dong,et al.  Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys , 2015 .

[19]  Qiuju Li,et al.  Size-dependent of chromium (VI) adsorption on nano α-Fe 2 O 3 surface , 2015 .

[20]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[21]  C. Dong,et al.  β Zr–Nb–Ti–Mo–Sn alloys with low Young׳s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model , 2015 .

[22]  Jien-Wei Yeh,et al.  High-Entropy Alloys , 2014 .

[23]  Arie Zaban,et al.  Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping. , 2014, The Review of scientific instruments.

[24]  C. Dong,et al.  First-principle study of the structural, electronic, and magnetic properties of amorphous Fe–B alloys , 2012 .

[25]  Zhe-feng Zhang,et al.  General relationship between strength and hardness , 2011 .

[26]  Chuang Dong,et al.  The e/a values of ideal metallic glasses in relation to cluster formulae , 2011 .

[27]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[28]  C. Dong,et al.  Cluster formulae for alloy phases , 2010 .

[29]  J. Yeh,et al.  Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films , 2010 .

[30]  J. Shen,et al.  Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation , 2009 .

[31]  K. Dehghani,et al.  A New Model for Inverse Hall-Petch Relation of Nanocrystalline Materials , 2008, Journal of Materials Engineering and Performance.

[32]  H. Birkedal,et al.  Pulsed DC magnetron sputtered Al2O3 films and their hardness , 2007 .

[33]  Guozhong Cao,et al.  Hierarchically Structured ZnO Film for Dye‐Sensitized Solar Cells with Enhanced Energy Conversion Efficiency , 2007 .

[34]  Gaorong Han,et al.  From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses , 2007 .

[35]  Xuelin Yang,et al.  High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling , 2006 .

[36]  A. Tiwari,et al.  Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature , 2006 .

[37]  Kee-Rong Wu,et al.  Characteristics of graded TiO2 and TiO2/ITO films prepared by twin DC magnetron sputtering technique , 2006 .

[38]  Young-Ki Cho,et al.  Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating , 2005 .

[39]  T. Nieh,et al.  Instrumented indentation properties of electrodeposited Ni-W alloys with different microstructures , 2004 .

[40]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[41]  C. Koch,et al.  The Inverse Hall-Petch Effect—Fact or Artifact? , 2000 .

[42]  Akhtar S. Khan,et al.  Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling , 1999 .

[43]  C. Pande,et al.  Yield stress of fine grained materials , 1998 .

[44]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[45]  J. Yamaki,et al.  Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol–gel method , 1997 .

[46]  Elias C. Aifantis,et al.  A simple, mixtures-based model for the grain size dependence of strength in nanophase metals , 1995 .

[47]  W. Johnson,et al.  Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys , 1992 .

[48]  Jeffrey Wadsworth,et al.  Hall-petch relation in nanocrystalline solids , 1991 .

[49]  T. Courtney,et al.  Mechanical Behavior of Materials , 1990 .

[50]  G. Neumann,et al.  The investigation of the pressure and temperature dependence of the electrical conductivity of thin zinc oxide films with high resistances , 1986 .

[51]  P. Cote,et al.  Resistivity in Amorphous and Disordered Crystalline Alloys , 1977 .

[52]  J. Mackenzie,et al.  Vicker's Hardness of glass , 1974 .

[53]  N. Mott Conduction in non-crystalline systems: VIII. The highly correlated electron gas in doped semiconductors and in vanadium monoxide , 1971 .

[54]  D. Whitmore,et al.  Electrical conductivity and thermoelectric power of niobium dioxide , 1966 .

[55]  R. Dreyfus,et al.  Ionic Conductivity of Doped NaCl Crystals , 1962 .

[56]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[57]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .