A note on the meaning of mixture viscosity using the classical continuum theories of mixtures

In this paper we provide a brief review of the basic equations for the flow of two linearly viscous fluids using the mixture theory equations given in Atkin and Craine [R.J. Atkin, R.E. Craine, Continuum theories of mixtures: applications, J. Inst. Math. Appl. 17 (1976) 153; R.J. Atkin, R.E. Craine, Continuum theories of mixtures: basic theory and historical development, Quart. J. Mech. Appl. Math. 29 (1976) 290]. We then look at certain principles (or more accurately assumptions) due to Truesdell [C. Truesdell, Sulle basi della thermomeccanica, Rand Lincei, Series 8 22 (1957) 33–38, and 158–166] and Adkins [J.E. Adkins, Non-linear diffusion, 1. Diffusion and flow of mixtures of fluids, Philos. Trans. Roy. Soc. London A 255 (1963) 607–633; J.E. Adkins, Non-linear diffusion, 2. Constitutive equations for mixtures of isotropic fluids, Philos. Trans. Roy. Soc. London A 255 (1963) 635–648] and show that if the ‘assumption of the limiting cases’ of Adkins is to hold, then a very specific structure on the material properties of the two fluids has to be imposed. This new hypothesis provides one such condition for this requirement. An attempt is made to derive a relationship for the mixture viscosity using these ideas.

[1]  Mehrdad Massoudi,et al.  Flow of a fluid infused with solid particles through a pipe , 1991 .

[2]  I. Samohýl Thermodynamics of Reacting Mixtures of Any Symmetry with Heat Conduction, Diffusion and Viscosity , 1999 .

[3]  R. E. Craine,et al.  Continuum Theories of Mixtures: Applications , 1976 .

[4]  Mehrdad Massoudi,et al.  Boundary conditions in mixture theory and in CFD applications of higher order models , 2007, Comput. Math. Appl..

[5]  Romesh C. Batra,et al.  Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic constituents , 2006 .

[6]  Hubert Zangl,et al.  Measurement of Slug Length and Slug Velocity in Pneumatic Conveying Using Capacitive Sensing , 2007 .

[7]  Ivan Samohýl Application of Truesdell's model of mixtures to an ionic liquid mixture , 2007, Comput. Math. Appl..

[8]  Hans Petter Langtangen,et al.  Solving systems of partial differential equations using object-oriented programming techniques with coupled heat and fluid flow as example , 2001, TOMS.

[9]  P. D. Kelly A reacting continuum , 1964 .

[10]  Lee A. Segel,et al.  Averaged Equations for Two-Phase Flows , 1971 .

[11]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[12]  J. E. Adkins,et al.  A contribution to the theory of non-linear diffusion , 1965 .

[13]  John H. Cushman,et al.  Thermomechanical theories for swelling porous media with microstructure , 2000 .

[14]  Mehrdad Massoudi,et al.  Flow of a fluid—solid mixture between flat plates , 1991 .

[15]  Mukesh V. Gandhi,et al.  On boundary conditions for a certain class of problems in mixture theory , 1986 .

[16]  D. Ieşan Continuous dependence in a nonlinear theory of viscoelastic porous mixtures , 2006 .

[17]  R. Sampaio,et al.  On the viscosities of liquid mixtures , 1977 .

[18]  K. Hutter,et al.  A systematic approach to the thermodynamics of single and mixed flowing media with microstructure. Part I: balance equations and jump conditions , 2002 .

[19]  Emmanuel M Detournay,et al.  From mixture theory to biot’s approach for porous media , 1998 .

[20]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[21]  J. Humphrey,et al.  Material Identification of Nonlinear Solids Infused with a Fluid , 2002 .

[22]  K. Rajagopal,et al.  Lubrication With Binary Mixtures: Bubbly Oil , 1993 .

[23]  S. Barış Some simple unsteady unidirectional flows of a binary mixture of incompressible Newtonian fluids , 2002 .

[24]  M. Massoudi,et al.  On the flow of a fluid–particle mixture between two rotating cylinders, using the theory of interacting continua , 2000 .

[25]  D. S. Drumheller,et al.  Theories of immiscible and structured mixtures , 1983 .

[26]  Sharat C. Prasad,et al.  On the Diffusion of Fluids Through Solids Undergoing Large Deformations , 2005 .

[27]  W. O. Williams Constitutive equations for flow of an incompressible viscous fluid through a porous medium , 1978 .

[28]  A. Green,et al.  A note on mixtures , 1968 .

[29]  J. E. Adkins,et al.  Non-Linear Diffusion - Non-linear diffusion I. Diffusion and flow of mixtures of fluids , 1963, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[31]  Tomáš Roubíček,et al.  Incompressible ionized fluid mixtures , 2006 .

[32]  P. M. Naghdi,et al.  A Dynamical theory of interacting continua , 1965 .

[33]  Donald A. Drew,et al.  Two-phase flows: Constitutive equations for lift and Brownian motion and some basic flows , 1976 .

[34]  D. S. Drumheller,et al.  On Theories for Reacting Immiscible Mixtures , 2000 .

[35]  T. Reed,et al.  Viscosities of Liquid Mixtures , 1959 .

[36]  P. M. Naghdi,et al.  A theory of mixtures , 1967 .

[37]  Hubert Zangl,et al.  Signal modelling and algorithms for parameter estimation in pneumatic conveying , 2007 .

[38]  Clifford Ambrose Truesdell,et al.  Mechanical Basis of Diffusion , 1962 .

[39]  A. Wineman,et al.  Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media , 1981 .

[40]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[41]  Mehrdad Massoudi,et al.  Constitutive relations for the interaction force in multicomponent particulate flows , 2003 .

[42]  Jay D. Humphrey,et al.  A mixture theory for heat-induced alterations in hydration and mechanical properties in soft tissues , 2001 .

[43]  I. Müller A thermodynamic theory of mixtures of fluids , 1968 .

[44]  R. E. Craine,et al.  CONTINUUM THEORIES OF MIXTURES: BASIC THEORY AND HISTORICAL DEVELOPMENT , 1976 .

[45]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[46]  J. E. Adkins,et al.  Non-Linear Diffusion - Non-linear diffusion II. Constitutive equations for mixtures of isotropic fluids , 1963, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  Kumbakonam R. Rajagopal,et al.  ON A HIERARCHY OF APPROXIMATE MODELS FOR FLOWS OF INCOMPRESSIBLE FLUIDS THROUGH POROUS SOLIDS , 2007 .

[48]  M. Šilhavý,et al.  Mixture invariance and its applications , 1990 .

[49]  P. Ravindran,et al.  Steady Free Surface Flow of a Fluid-Solid Mixture Down an Inclined Plane , 2004 .

[50]  N. Mills,et al.  Incompressible mixtures of newtonian fluids , 1966 .

[51]  Mehrdad Massoudi,et al.  On the importance of material frame-indifference and lift forces in multiphase flows , 2002 .

[52]  Mehrdad Massoudi,et al.  On the fully developed flow of a dense particulate mixture in a pipe , 1999 .

[53]  C. Beevers,et al.  On the determination of response functions for a binary mixture of incompressible newtonian fluids , 1982 .