Estimating the Resources for Quantum Computation with the QuRE Toolbox

Abstract : This report describes the methodology employed by the Quantum Resource Estimator (QuRE) toolbox to quantify the resources needed to run quantum algorithms on quan- tum computers with realistic properties. The QuRE toolbox estimates a number of quantities including the number of physical qubits required to run a specified quantum algorithm, the execution time on each of the specified physical technologies, the probability of success of the computation, as well as physical gate counts with a breakdown by gate type. Estimates are performed for error-correcting codes representing codes from both the concatenated and topological code families. Our work, which provides these resource estimates for a cross product of seven quantum algorithms, six physical machine descriptions, several quantum control protocols, and four error-correcting codes, represents the most comprehensive resource estimation effort in the field of quantum computation to date.

[1]  Panos Aliferis Level Reduction and the Quantum Threshold Theorem , 2007 .

[2]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[3]  John Gaebler,et al.  Quantum information processing with trapped ions , 2013 .

[4]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[6]  Vwani P. Roychowdhury,et al.  Latency in local, two-dimensional, fault-tolerant quantum computing , 2008, Quantum Inf. Comput..

[7]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[8]  Martin Suchara,et al.  Performance and error analysis of Knill's postselection scheme in a two-dimensional architecture , 2013, Quantum Inf. Comput..

[9]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[10]  Guang-Can Guo,et al.  Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors , 2007 .

[11]  Relaxation , 1988, Annual Review of Nursing Research.

[12]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[13]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[14]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[15]  Krysta M. Svore,et al.  A Depth-Optimal Canonical Form for Single-qubit Quantum Circuits , 2012, 1206.3223.

[16]  Oded Regev Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..

[17]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[18]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[19]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[20]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[21]  Krysta M. Svore,et al.  A Resource-Optimal Canonical Form for Single-qubit Quantum Circuits , 2012 .

[22]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[23]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[24]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[25]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[26]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[27]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[28]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[29]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[30]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[31]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[32]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[33]  T. Spiller,et al.  Efficient optical quantum information processing , 2005, quant-ph/0506116.

[34]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[35]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[36]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[37]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[38]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[39]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .