University of Groningen Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA Features Mudali,

[1]  Christophe Phillips,et al.  Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes , 2013, NeuroImage: Clinical.

[2]  J. Roerdink,et al.  Validation of parkinsonian disease‐related metabolic brain patterns , 2013, Movement disorders : official journal of the Movement Disorder Society.

[3]  Heloisa A. Camargo,et al.  A Fuzzy Decision Tree Algorithm Based on C4.5 , 2013, SOCO 2013.

[4]  R. Buchert,et al.  [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism , 2012, Neurology.

[5]  Mohammed Sadeq Al-Rawi,et al.  Using Permutation Tests to Study How the Dimensionality, the Number of Classes, and the Number of Samples Affect Classification Analysis , 2012, ICIAR.

[6]  Amutha Prabakar Muniyandi,et al.  Network Anomaly Detection by Cascading K-Means Clustering and C4.5 Decision Tree algorithm , 2012 .

[7]  Jos B. T. M. Roerdink,et al.  Glucose IMaging in ParkinsonismS , 2012 .

[8]  David Eidelberg,et al.  Scaled subprofile modeling of resting state imaging data in Parkinson's disease: Methodological issues , 2011, NeuroImage.

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  David Eidelberg,et al.  Three-fold cross-validation of parkinsonian brain patterns , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[11]  K. Leenders,et al.  Typical cerebral metabolic patterns in neurodegenerative brain diseases , 2010, Movement disorders : official journal of the Movement Disorder Society.

[12]  Chris C. Tang,et al.  Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis , 2010, The Lancet Neurology.

[13]  D. Eidelberg Metabolic brain networks in neurodegenerative disorders: a functional imaging approach , 2009, Trends in Neurosciences.

[14]  David Eidelberg,et al.  Differential diagnosis of parkinsonian syndromes using PCA-based functional imaging features , 2009, NeuroImage.

[15]  James Ralph Moeller,et al.  Abnormal regional brain function in Parkinson's disease: truth or fiction? , 2009, NeuroImage.

[16]  Kemal Polat,et al.  A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems , 2009, Expert Syst. Appl..

[17]  Mevlut Ture,et al.  Using Kaplan-Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients , 2009, Expert Syst. Appl..

[18]  P Sandroni,et al.  Second consensus statement on the diagnosis of multiple system atrophy , 2008, Neurology.

[19]  D. Eidelberg,et al.  Abnormal metabolic networks in atypical parkinsonism , 2008, Movement disorders : official journal of the Movement Disorder Society.

[20]  V. Dhawan,et al.  Abnormal Metabolic Network Activity in Parkinson'S Disease: Test—Retest Reproducibility , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[22]  Polina Golland,et al.  Permutation Tests for Classification: Towards Statistical Significance in Image-Based Studies , 2003, IPMI.

[23]  I. McKeith,et al.  SIC Task Force appraisal of clinical diagnostic criteria for parkinsonian disorders , 2003, Movement disorders : official journal of the Movement Disorder Society.

[24]  H. D. Buf,et al.  Automatic diatom identification , 2002 .

[25]  Jos B. T. M. Roerdink,et al.  Mixed-method identifications , 2002 .

[26]  Petra Perner,et al.  Improving the accuracy of decision tree induction by feature preselection , 2001, Appl. Artif. Intell..

[27]  M. Hallett,et al.  Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) , 1996, Neurology.

[28]  J. Ross Quinlan,et al.  Learning decision tree classifiers , 1996, CSUR.

[29]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[30]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[31]  J R Moeller,et al.  A Regional Covariance Approach to the Analysis of Functional Patterns in Positron Emission Tomographic Data , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  S. Strother,et al.  Scaled Subprofile Model: A Statistical Approach to the Analysis of Functional Patterns in Positron Emission Tomographic Data , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  H. Akaike A new look at the statistical model identification , 1974 .