Extremal spectral radius of K3,3/K2,4-minor free graphs

Abstract Let ρ ⁎ ( s , t ) be the largest real root of the quadratic equation: ( x − s + 2 ) ( x − t + 1 ) − ( n − s + 1 ) ( s − 1 ) = 0 and F s , t ( n ) : = K s − 1 ∨ ( p K t + K q ) , where 2 ≤ s ≤ t , n − s + 1 = p t + q and 0 ≤ q t . Nikiforov in 2017 showed that the spectral radius ρ ( G ) satisfies ρ ( G ) ≤ ρ ⁎ ( 2 , t ) for any K 2 , t -minor free graph G of order n large enough, with equality if and only if G ≅ F 2 , t ( n ) . Tait in 2019 extended Nikiforov's result as follows: for 2 ≤ s ≤ t , if G is a K s , t -minor free graph G of order n large enough, then ρ ( G ) ≤ ρ ⁎ ( s , t ) , with equality if and only if G ≅ F s , t ( n ) . Note that when t does not divide n − s + 1 , the equalities above are impossible. Tait proposed the following conjecture: If G is a K s , t -minor free graph of order n large enough, then ρ ( G ) ≤ ρ ( F s , t ( n ) ) , with equality if and only if G ≅ F s , t ( n ) . The previous results due to Nikiforov showed that the conjecture holds for s + t ≤ 5 . In this paper, we confirm the conjecture for s + t = 6 .

[1]  A complete solution to the Cvetković–Rowlinson conjecture , 2021, J. Graph Theory.

[2]  Bogdan Oporowski,et al.  Surfaces, Tree-Width, Clique-Minors, and Partitions , 2000, J. Comb. Theory, Ser. B.

[3]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[4]  Kun-Fu Fang Bounds of Eigenvalues of K3,3-Minor Free Graphs , 2009 .

[5]  Yuan Hong,et al.  Tree-width, clique-minors, and eigenvalues , 2004, Discret. Math..

[6]  V. Nikiforov,et al.  The spectral radius of graphs with no K2,t minor , 2017, 1703.01839.

[7]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[8]  G. Royle,et al.  A Conjecture on the Maximum Value of the Principal Eigenvalue of a Planar Graph , 2010 .

[9]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[10]  V. Nikiforov The maximum spectral radius of C4-free graphs of given order and size , 2007, 0712.1301.

[11]  Michael Tait,et al.  Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.

[12]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[13]  Jinlong Shu,et al.  Bounds of spectral radii of K_{2,3}-minor free graphs , 2012 .

[14]  D. Cao,et al.  The spectral radius of a planar graph , 1993 .

[15]  Michael Tait,et al.  The Colin de Verdière parameter, excluded minors, and the spectral radius , 2017, J. Comb. Theory, Ser. A.

[16]  D. Cvetkovic,et al.  The largest eigenvalue of a graph: A survey , 1990 .

[17]  W. Mader Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .