A low-latency pipeline for GRB light curve and spectrum using Fermi/GBM near real-time data

Rapid response and short time latency are very important for Time Domain Astronomy, such as the observations of Gamma-ray Bursts (GRBs) and electromagnetic (EM) counterparts of gravitational waves (GWs). Based on the near real-time Fermi/GBM data, we developed a low-latency pipeline to automatically calculate the temporal and spectral properties of GRBs. With this pipeline, some important parameters can be obtained, such as T90 and fluence, within ~20 minutes after the GRB trigger. For ~90% GRBs, T90 and fluence are consistent with the GBM catalog results within 2 sigma errors. This pipeline has been used by the Gamma-ray Bursts Polarimeter (POLAR) and the Insight Hard X-ray Modulation Telescope (Insight-HXMT) to follow up the bursts of interest. For GRB 170817A, the first EM counterpart of GW events detected by Fermi/GBM and INTEGRAL/SPI-ACS, the pipeline gave T90 and spectral information in 21 minutes after the GBM trigger, providing important information for POLAR and Insight-HXMT observations.

[1]  Brian D. Metzger,et al.  Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era , 2015, 1512.05435.

[2]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[3]  Yue Zhu,et al.  Insight-HXMT observations of the first binary neutron star merger GW170817 , 2017 .

[4]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: THE FIRST TWO YEARS , 2012, 1201.2981.

[5]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[6]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS , 2012, 1201.3099.

[7]  Bing Zhang Open questions in GRB physics , 2011, 1104.0932.

[8]  R. C. Butler,et al.  BeppoSAX, the wide band mission for X-ray astronomy , 1997 .

[9]  A. J. van der Horst,et al.  THE SECOND FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST FOUR YEARS , 2014, 1401.5080.

[10]  A. J. van der Horst,et al.  LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR , 2014, 1411.2685.

[11]  Bing Zhang,et al.  The physics of gamma-ray bursts & relativistic jets , 2014, 1410.0679.

[12]  G. Lamanna,et al.  A method to localize gamma-ray bursts using POLAR , 2010 .

[13]  Davide Lazzati,et al.  Polarization in the prompt emission of gamma-ray bursts and their afterglows , 2006, astro-ph/0607663.

[14]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[15]  D. Sz'ecsi,et al.  Direction dependent background fitting for the Fermi GBM data , 2013, 1306.3812.

[16]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[18]  Ray W. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .

[19]  Eric Burns,et al.  THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.

[20]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[21]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[22]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[23]  S. McBreen,et al.  Uncovering low-level Fermi/GBM emission using orbital background subtraction , 2011, 1111.3779.

[24]  A. Castro-Tirado,et al.  Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B , 2016, Nature Astronomy.

[25]  J. P. Vialle,et al.  Response of the Compton polarimeter POLAR to polarized hard X-rays , 2011 .

[26]  Z. L. Uhm,et al.  SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B , 2015, 1505.05858.

[27]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[28]  P. N. Bhat,et al.  The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years , 2016, 1601.05206.

[29]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[30]  Nicolas Produit,et al.  Expected performance of a hard X-ray polarimeter (POLAR) by Monte Carlo simulation , 2009 .

[31]  Roland Diehl,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: FOUR YEARS OF DATA , 2014, 1401.5069.

[32]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[33]  Nicolas Produit,et al.  Design and construction of the POLAR detector , 2017, 1709.07191.

[34]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[35]  T. Sakamoto,et al.  STATISTICAL PROPERTIES OF GAMMA-RAY BURST POLARIZATION , 2008, 0812.2483.