Image segmentation and discriminant analysis for the identification of land cover units in ecology

The textured nature of most natural land cover units as represented in remotely sensed imagery causes limited results of per-pixel classifications. The segmentation algorithm, iterative mutually optimum region merging (IMORM), is presented and used to partition images into elements that are thereafter classified by linear canonical discriminant analysis and a maximum likelihood allocation rule. This per-segment approach results in much higher accuracy than the conventional per-pixel approach. Furthermore, separability matrices indicate that many land cover categories cannot be correctly defined by per-pixel statistics.

[1]  Jong-Hun Lee,et al.  Spectral texture pattern matching: a classifier for digital imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[2]  G. Foody,et al.  Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .

[3]  W. Baker Spatially heterogeneous multi-scale response of landscapes to fire suppression , 1993 .

[4]  G. Foody A fuzzy sets approach to the representation of vegetation continua from remotely sensed data : an example from lowland health , 1992 .

[5]  F. G. Alonso,et al.  Using contextual information to improve land use classification of satellite images in central Spain , 1991 .

[6]  G. Ramstein,et al.  Analysis of the structure of radiometric remotely-sensed images , 1989 .

[7]  Larry S. Davis,et al.  Texture Analysis Using Generalized Co-Occurrence Matrices , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  James R. Irons,et al.  Texture transforms of remote sensing data , 1981 .

[9]  David A. Landgrebe,et al.  A spectral feature design system for the HIRIS/MODIS era , 1989 .

[10]  C. Justice,et al.  Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations , 1988 .

[11]  B. F. Merembeck,et al.  Directed Canonical Analysis And the Performance of Classifiers under Its Associated Linear Transformation , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Martin D. Levine,et al.  Low Level Image Segmentation: An Expert System , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Haim J. Wolfson,et al.  Texture classification in aerial photographs and satellite data , 1992 .

[15]  David A. Landgrebe,et al.  The development of a spectral-spatial classifier for earth observational data , 1980, Pattern Recognit..

[16]  Larry S. Davis,et al.  An Empirical Evaluation of Generalized Cooccurrence Matrices , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Aaron Moody,et al.  Scale-dependent errors in the estimation of land-cover proportions. Implications for global land-cover datasets , 1994 .

[18]  S. Sader,et al.  Spatial characteristics of forest clearing and vegetation regrowth as detected by Landsat Thematic Mapper imagery , 1995 .

[19]  James Darrell McCauley,et al.  Comparison of scene segmentations: SMAP, ECHO, and maximum likelihood , 1995, IEEE Trans. Geosci. Remote. Sens..

[20]  R. Kettig,et al.  Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects , 1976, IEEE Transactions on Geoscience Electronics.

[21]  Stephen B. Vardeman,et al.  Contextual classification of multispectral image data , 1981, Pattern Recognit..

[22]  D. A. Landgrebe Machine Processing for Remotely Acquired Data , 1973 .

[23]  Curtis E. Woodcock,et al.  Nested-hierarchical scene models and image segmentation , 1992 .

[24]  Paul J. Curran,et al.  Per-field classification: an example using SPOT HRV imagery , 1991 .

[25]  A. Lobo,et al.  Classification of Mediterranean crops with multisensor data: per-pixel versus per-object statistics and image segmentation , 1996 .

[26]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[28]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Alan H. Strahler,et al.  On the nature of models in remote sensing , 1986 .

[30]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[31]  A. Rosenfeld,et al.  Visual texture analysis , 1970 .

[32]  Jeremy F. Wallace,et al.  Spectral discrimination and mapping of waterlogged cereal crops in Western Australia , 1993 .

[33]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Linda G. Shapiro,et al.  Image Segmentation Techniques , 1984, Other Conferences.

[35]  David A. Landgrebe,et al.  Spectral band selection for classification of soil organic matter content , 1989 .

[36]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[37]  A. Lobo,et al.  Fine-scale mapping of a grassland from digitized aerial photography: an approach using image segmentation and discriminant analysis , 1998 .