Regularized robust estimators for time varying uncertain discrete-time systems

Abstract This paper addresses the issue of robust filtering for time varying uncertain discrete time systems. The proposed robust filters are based on a regularized least-squares formulation and guarantee minimum state error variances. Simulation results indicate their superior performance Over other robust filter designs.

[1]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[2]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[3]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[4]  Ian R. Petersen,et al.  Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty , 1998, Autom..

[5]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[6]  Hong Chen,et al.  A uniqueness result concerning a robust regularized least-squares solution , 2002, Syst. Control. Lett..

[7]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[10]  Fuwen Yang,et al.  Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises , 2002, IEEE Trans. Autom. Control..

[11]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[12]  Ali H. Sayed,et al.  A Regularized Robust Design Criterion for Uncertain Data , 2001, SIAM J. Matrix Anal. Appl..

[13]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[14]  G. Nicolao,et al.  Optimal design of robust predictors for linear discrete-time systems , 1995 .

[15]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[16]  S. Chandrasekaran,et al.  ESTIMATION AND CONTROL WITH BOUNDED DATA UNCERTAINTIES , 1998 .

[17]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Ian R. Petersen,et al.  Robust Kalman Filtering for Signals and Systems with Large Uncertainties , 1999 .