Temperature Compensated Tactile Sensing Using MOSFET With P(VDF-TrFE)/BaTiO3 Capacitor as Extended Gate

This paper presents poly(vinylidene fluoride–trifluoroethylene)/barium titanate [P(VDF-TrFE)-BT] nanocomposite-based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezoelectric and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/ pressure (0–4N)/(0–364 Pa) and temperature (26 °C–70 °C) with almost linear response. The sensitivity toward force/pressure and temperature sensor is 670 mV/N/7.36 mV/Pa and 15.34 mV/°C, respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications.

[1]  Changhai Zhang,et al.  Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles , 2016, Scientific Reports.

[2]  I. Darian‐Smith,et al.  Thermal sensibility and thermoreceptors. , 1977, The Journal of investigative dermatology.

[3]  Luigi Pinna,et al.  Tactile Sensing Chips With POSFET Array and Integrated Interface Electronics , 2014, IEEE Sensors Journal.

[4]  V. Murthy,et al.  Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications , 2013 .

[5]  Ravinder Dahiya,et al.  Multifunctional flexible PVDF-TrFE/BaTiO3 based tactile sensor for touch and temperature monitoring , 2017, 2017 IEEE SENSORS.

[6]  Sang-Jae Kim,et al.  Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. , 2015, ACS applied materials & interfaces.

[7]  D. Sun,et al.  Investigation on FT-IR spectra and dielectric property of PVDF/inorganic composites , 2013, Journal of Materials Science: Materials in Electronics.

[8]  Bernd Ploss,et al.  Pyroelectric or piezoelectric compensated ferroelectric composites , 2000 .

[9]  S. Muensit,et al.  Determination of piezoelectric and pyroelectric coefficients and thermal diffusivity of 1-3 PZT/epoxy composites , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  E. O. Polat,et al.  Energy‐Autonomous, Flexible, and Transparent Tactile Skin , 2017 .

[11]  Chiara Bartolozzi,et al.  Robots with a sense of touch. , 2016, Nature materials.

[12]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[13]  Marc Rébillat,et al.  A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves , 2016 .

[14]  D. Arnold Composition-driven structural phase transitions in rare-earth-doped bifeo3 ceramics: a review , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[15]  R. Patil,et al.  Novel polyaniline/PVDF/BaTiO3 hybrid composites with high piezo-sensitivity , 2007 .

[16]  Gordon Cheng,et al.  Directions Toward Effective Utilization of Tactile Skin: A Review , 2013, IEEE Sensors Journal.

[17]  T. Hanemann,et al.  Polymer-Nanoparticle Composites: From Synthesis to Modern Applications , 2010, Materials.

[18]  J. Freischlag,et al.  Response , 1994, Science.

[19]  P. Kohl,et al.  Novel polymer–ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application , 2002 .

[20]  M. Hockley,et al.  Pyroelectric coefficient difference under open and short circuit conditions and their enhancements in laminate composites , 2011 .

[21]  D. Stone,et al.  Enhanced dielectric and piezoelectric properties of xBaZrO3-(1−x)BaTiO3 ceramics , 2012 .

[22]  S. Bauer,et al.  Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin , 2009 .

[23]  Hari Singh Nalwa,et al.  Ferroelectric Polymers : Chemistry: Physics, and Applications , 1995 .

[24]  Z. Imran,et al.  Charge carrier transport mechanisms in perovskite CdTiO3 fibers , 2014 .

[25]  K. Kakimoto,et al.  Fabrication of fibrous BaTiO3-reinforced PVDF composite sheet for transducer application , 2013 .

[26]  D. Xue,et al.  Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications , 2017 .

[27]  Maurizio Valle,et al.  Tactile-Data Classification of Contact Materials Using Computational Intelligence , 2011, IEEE Transactions on Robotics.

[28]  Senentxu Lanceros-Méndez,et al.  Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites , 2013 .

[29]  Yu Bai,et al.  Significantly Enhanced Breakdown Strength and Energy Density in Sandwich‐Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites , 2015, Advanced materials.

[30]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[31]  Dong F. Wang,et al.  A temperature compensation methodology for piezoelectric based sensor devices , 2017 .

[32]  B. Bruggen,et al.  Formation of an interconnected lamellar structure in PVDF membranes with nanoparticles addition via solid‐liquid thermally induced phase separation , 2013 .

[33]  Ravinder Dahiya,et al.  Robotic Tactile Sensing: Technologies and System , 2012 .

[34]  R. Dahiya,et al.  Multifunctional sensor based on organic field-effect transistor and ferroelectric poly(vinylidene fluoride trifluoroethylene) , 2018 .

[35]  J. González‐Benito,et al.  Flexible PVDF-BaTiO3 Nanocomposites as Potential Materials for Pressure Sensors , 2013 .

[36]  Gordon Cheng,et al.  New materials and advances in making electronic skin for interactive robots , 2015, Adv. Robotics.

[37]  Zhenan Bao,et al.  Pursuing prosthetic electronic skin. , 2016, Nature materials.

[38]  Stephen Ducharme,et al.  Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films , 1999 .

[39]  Maurizio Valle,et al.  A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor , 2016 .

[40]  S. Bauer,et al.  PbTiO3 – P(VDF-TrFE) – Nanocomposites for Pressure and Temperature Sensitive Skin , 2011 .

[41]  Hong Wang,et al.  Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications , 2013 .

[42]  Ravinder Dahiya,et al.  Flexible Pressure Sensors Based on Screen-Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs , 2015, IEEE Transactions on Semiconductor Manufacturing.

[43]  Ravinder Dahiya,et al.  Robotic Tactile Perception of Object Properties: A Review , 2017, ArXiv.