SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at z ∼ 6–7: Strong Associations of Dusty Star-forming Galaxies

We have obtained three-dimensional maps of the universe in ∼200 × 200 × 80 comoving Mpc3 (cMpc3) volumes each at z = 5.7 and 6.6 based on a spectroscopic sample of 179 galaxies that achieves ≳80% completeness down to the Lyα luminosity of , based on our Keck and Gemini observations and the literature. The maps reveal filamentary large-scale structures and two remarkable overdensities made out of at least 44 and 12 galaxies at z = 5.692 (z57OD) and z = 6.585 (z66OD), respectively, making z66OD the most distant overdensity spectroscopically confirmed to date, with >10 spectroscopically confirmed galaxies. We compare spatial distributions of submillimeter galaxies at z ≃ 4–6 with our z = 5.7 galaxies forming the large-scale structures, and detect a 99.97% signal of cross-correlation, indicative of a clear coincidence of dusty star-forming galaxy and dust-unobscured galaxy formation at this early epoch. The galaxies in z57OD and z66OD are actively forming stars with star-formation rates (SFRs) ≳5 times higher than the main sequence, and particularly the SFR density in z57OD is 10 times higher than the cosmic average at the redshift (a.k.a. the Madau-Lilly plot). Comparisons with numerical simulations suggest that z57OD and z66OD are protoclusters that are progenitors of the present-day clusters with halo masses of ∼1014 M⊙.

[1]  Masayuki Tanaka,et al.  SILVERRUSH. VII. Subaru/HSC Identifications of Protocluster Candidates at z ∼ 6–7: Implications for Cosmic Reionization , 2019, Proceedings of the International Astronomical Union.

[2]  J. M. Rodríguez Espinosa,et al.  Physical Properties of a Coma-analog Protocluster at z = 6.5 , 2019, The Astrophysical Journal.

[3]  O. Fèvre,et al.  How Do Galaxies Trace a Large-scale Structure? A Case Study around a Massive Protocluster at Z = 3.13 , 2019, The Astrophysical Journal.

[4]  L. Ho,et al.  A giant protocluster of galaxies at redshift 5.7 , 2018, Nature Astronomy.

[5]  I. Smail,et al.  Two sub-millimetre bright protoclusters bounding the epoch of peak star-formation activity , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  A. Fontana,et al.  Spectroscopic Investigation of a Reionized Galaxy Overdensity at z = 7 , 2018, The Astrophysical Journal.

[7]  J. Dunlop,et al.  AzTEC 1.1 mm observations of high-z protocluster environments: SMG overdensities and misalignment between AGN jets and SMG distribution , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  Benjamin D. Johnson,et al.  A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ≳ 4 , 2018, The Astrophysical Journal.

[10]  D. Watson,et al.  Big Three Dragons: A z = 7.15 Lyman-break galaxy detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum with ALMA , 2018, Publications of the Astronomical Society of Japan.

[11]  C. Conselice,et al.  An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: Number Counts of Submillimeter Galaxies , 2018, The Astrophysical Journal.

[12]  J. Carlstrom,et al.  A massive core for a cluster of galaxies at a redshift of 4.3 , 2018, Nature.

[13]  I. Smail,et al.  ALMA deep field in SSA22: Survey design and source catalog of a 20 arcmin2 survey at 1.1 mm , 2018, Publications of the Astronomical Society of Japan.

[14]  C. Carilli,et al.  Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at z = 5.7 in the COSMOS Field , 2018, 1803.08048.

[15]  Masayuki Tanaka,et al.  SILVERRUSH. VII. Subaru/HSC Identifications of 42 Protocluster Candidates at z~6-7 with the Spectroscopic Redshifts up to z=6.574: Implications for Cosmic Reionization , 2018, 1801.00531.

[16]  K. Shimasaku,et al.  SILVERRUSH. VI. A simulation of Lyα emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data , 2017, 1801.00067.

[17]  O. Ilbert,et al.  SILVERRUSH. V. Census of Lyα, [O iii] λ5007, Hα, and [C ii] 158 μm Line Emission with ∼1000 LAEs at z = 4.9–7.0 Revealed with Subaru/HSC , 2017, 1711.03735.

[18]  S. Maddox,et al.  An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe , 2017, The Astrophysical Journal.

[19]  V. Buat,et al.  Towards a census of high-redshift dusty galaxies with Herschel , 2017, Astronomy & Astrophysics.

[20]  D. Riechers,et al.  Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties , 2017, 1708.07842.

[21]  R. Terlevich,et al.  Gran Telescopio Canarias observations of an overdense region of Lyman α emitters at z = 6.5 , 2017 .

[22]  F. Bertoldi,et al.  Discovery of a Protocluster Associated with a Lyα Blob Pair at z = 2.3 , 2017, 1708.00447.

[23]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[24]  S. Maddox,et al.  Using dust, gas and stellar mass-selected samples to probe dust sources and sinks in low-metallicity galaxies , 2017, 1705.02340.

[25]  T. Nagao,et al.  SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.

[26]  K. Gebhardt,et al.  Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr , 2017, 1705.01634.

[27]  Masayuki Tanaka,et al.  SILVERRUSH. III. Deep Optical and Near-Infrared Spectroscopy for Lya and UV-Nebular Lines of Bright Lya Emitters at z=6-7 , 2017, 1705.00733.

[28]  T. Nagao,et al.  Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.

[29]  Satoshi Miyazaki,et al.  GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 , 2017, 1704.06535.

[30]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[31]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: Emerging from the dark, a massive proto-cluster at z ~ 4.57 , 2017, Astronomy & Astrophysics.

[32]  G. Lagache,et al.  The impact of clustering and angular resolution on far-infrared and millimeter continuum observations , 2017, 1703.08795.

[33]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[34]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[35]  T. Nagao,et al.  ALMA Reveals Strong Emission in a Galaxy Embedded in a Giant Lyα Blob at z = 3.1 , 2016, 1701.00043.

[36]  P. P. van der Werf,et al.  THE SPACE DENSITY OF LUMINOUS DUSTY STAR-FORMING GALAXIES AT z > 4: SCUBA-2 AND LABOCA IMAGING OF ULTRARED GALAXIES FROM HERSCHEL-ATLAS , 2016, 1611.00762.

[37]  R. Overzier The realm of the galaxy protoclusters , 2016, 1610.05201.

[38]  S. Derriere,et al.  T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options , 2016, 1609.00146.

[39]  Astronomy,et al.  Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies , 2016, 1608.04736.

[40]  G. Bruzual,et al.  Modelling the nebular emission from primeval to present-day star-forming galaxies , 2016, 1607.06086.

[41]  E. I. Robson,et al.  The SCUBA-2 Cosmology Legacy Survey: 850 μm maps, catalogues and number counts , 2016, 1607.03904.

[42]  A. M. Swinbank,et al.  Herschel protocluster survey : A search for dusty star-forming galaxies in protoclusters at z = 2-3 , 2016, 1605.07370.

[43]  Masayuki Tanaka,et al.  A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.

[44]  Kyoung-Soo Lee,et al.  SPECTROSCOPIC CONFIRMATION OF A PROTOCLUSTER AT z ≈ 3.786 , 2016, 1604.08627.

[45]  C. Casey THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS , 2016, 1603.04437.

[46]  S. Charlot,et al.  Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016, 1603.03037.

[47]  O. Ilbert,et al.  REST-UV ABSORPTION LINES AS METALLICITY ESTIMATOR: THE METAL CONTENT OF STAR-FORMING GALAXIES AT z ∼ 5 , 2015, 1512.00018.

[48]  I. Smail,et al.  ALMA DEEP FIELD IN SSA22: A CONCENTRATION OF DUSTY STARBURSTS IN A z = 3.09 PROTOCLUSTER CORE , 2015, 1510.08861.

[49]  M. Ouchi,et al.  A VERY COMPACT DENSE GALAXY OVERDENSITY WITH δ ≃ 130 IDENTIFIED AT z ∼ 8: IMPLICATIONS FOR EARLY PROTOCLUSTER AND CLUSTER CORE FORMATION , 2015, 1509.01751.

[50]  P. Capak,et al.  A MASSIVE, DISTANT PROTO-CLUSTER AT z = 2.47 CAUGHT IN A PHASE OF RAPID FORMATION? , 2015, 1506.01715.

[51]  D. Schneider,et al.  SURVEYING GALAXY PROTO-CLUSTERS IN EMISSION: A LARGE-SCALE STRUCTURE AT z = 2.44 AND THE OUTLOOK FOR HETDEX , 2015, 1505.03877.

[52]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[53]  G. Zamorani,et al.  A PROTOCLUSTER AT z = 2.45 , 2014, 1411.0649.

[54]  A. Strom,et al.  THE Lyα PROPERTIES OF FAINT GALAXIES AT z ∼ 2–3 WITH SYSTEMIC REDSHIFTS AND VELOCITY DISPERSIONS FROM KECK-MOSFIRE , 2014, 1408.3638.

[55]  O. Fèvre,et al.  STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.

[56]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[57]  Masayuki Tanaka,et al.  A FIRST SITE OF GALAXY CLUSTER FORMATION: COMPLETE SPECTROSCOPY OF A PROTOCLUSTER AT z = 6.01 , 2014, 1407.1851.

[58]  A. Dey,et al.  DISCOVERY OF A VERY LARGE STRUCTURE AT Z = 3.78 , 2014, 1405.2620.

[59]  J. Vieira,et al.  Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel and Planck , 2014 .

[60]  B. Garilli,et al.  VIMOS Ultra-Deep Survey (VUDS): Witnessing the assembly of a massive cluster at z ~ 3.3 , 2014, 1403.4230.

[61]  P. W. Wang,et al.  Discovery of a rich proto-cluster at z = 2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS) , 2014, 1403.3691.

[62]  J. Austermann,et al.  AzTEC/ASTE 1.1-mm survey of SSA22: Counterpart identification and photometric redshift survey of submillimetre galaxies , 2014, 1403.2725.

[63]  T. U. O. Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014, 1402.0677.

[64]  Karl Gebhardt,et al.  DISCOVERY OF A LARGE NUMBER OF CANDIDATE PROTOCLUSTERS TRACED BY ∼15 Mpc-SCALE GALAXY OVERDENSITIES IN COSMOS , 2013, 1312.4747.

[65]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[66]  M. Sauvage,et al.  Revealing the cold dust in low-metallicity environments - I. Photometry analysis of the Dwarf Galaxy Survey with Herschel , 2013, 1309.1371.

[67]  Naveen A. Reddy,et al.  NARROWBAND LYMAN-CONTINUUM IMAGING OF GALAXIES AT z ∼ 2.85 , 2013, 1306.1535.

[68]  A. M. Swinbank,et al.  On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ∼ 2 , 2013, 1302.5315.

[69]  B. Groves,et al.  ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS , 2013, The Astrophysical Journal.

[70]  Leiden,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: high-resolution 870 μm source counts , 2012, 1210.0249.

[71]  M. Hayashi,et al.  A STARBURSTING PROTO-CLUSTER IN MAKING ASSOCIATED WITH A RADIO GALAXY AT z = 2.53 DISCOVERED BY Hα IMAGING , 2012, 1207.2614.

[72]  Toru Yamada,et al.  PROFILES OF Lyα EMISSION LINES OF THE EMITTERS AT z = 3.1 , 2012 .

[73]  Linhua Jiang,et al.  DISCOVERY OF A PROTOCLUSTER AT z ∼ 6 , 2012, 1203.1326.

[74]  R. Bouwens,et al.  OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z ≈ 8 , 2011, 1110.0468.

[75]  H. Rottgering,et al.  Discovery of a high-z protocluster with tunable filters: the case of 6C0140+326 at z=4.4 , 2011, 1106.5495.

[76]  L. Pentericci,et al.  Hα emitters in z∼ 2 protoclusters: evidence for faster evolution in dense environments , 2011, 1103.4364.

[77]  M. Salvato,et al.  A massive protocluster of galaxies at a redshift of z ≈ 5.3 , 2011, Nature.

[78]  European Southern Observatory,et al.  Discovery of an excess of Hα emitters around 4C 23.56 at z = 2.48 , 2010, 1012.1869.

[79]  S. Miyazaki,et al.  A LARGE NUMBER OF z > 6 GALAXIES AROUND A QSO AT z = 6.43: EVIDENCE FOR A PROTOCLUSTER? , 2010, 1008.0857.

[80]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[81]  J. Dunlop,et al.  REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62 , 2010, 1005.5126.

[82]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[83]  H. Rix,et al.  THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.

[84]  J. Austermann,et al.  Spatial correlation between submillimetre and Lyman-α galaxies in the SSA 22 protocluster , 2009, Nature.

[85]  R. Bouwens,et al.  ΛCDM predictions for galaxy protoclusters – I. The relation between galaxies, protoclusters and quasars at z∼ 6 , 2008, 0810.2566.

[86]  A. Dey,et al.  The Overdense Environment of a Large Lyα Nebula at z ≈ 2.7 , 2008, 0803.4230.

[87]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[88]  K. Schawinski,et al.  Lyα-Emitting Galaxies at z = 3.1: L* Progenitors Experiencing Rapid Star Formation , 2007, 0710.2697.

[89]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[90]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[91]  Cambridge,et al.  Protoclusters associated with z > 2 radio galaxies - I. Characteristics of high redshift protoclusters , 2006, astro-ph/0610567.

[92]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[93]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[94]  S. Okamura,et al.  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field , 2006, astro-ph/0604149.

[95]  H. Rottgering,et al.  Lyman Break Galaxies, Lyα Emitters, and a Radio Galaxy in a Protocluster at z = 4.1 , 2006, astro-ph/0601223.

[96]  S. Oliver,et al.  Bayesian Methods of Astronomical Source Extraction , 2005, astro-ph/0512597.

[97]  S. Okamura,et al.  Large-Scale Filamentary Structure around the Protocluster at Redshift z = 3.1 , 2005, astro-ph/0510762.

[98]  R. Bouwens,et al.  Clustering of Star-forming Galaxies Near a Radio Galaxy at z = 5.2 , 2005, astro-ph/0509308.

[99]  Toru Yamada,et al.  Masses of high-z galaxy hosting haloes from angular clustering and their evolution in the CDM model , 2005, astro-ph/0508536.

[100]  R. Bouwens,et al.  Feedback and Brightest Cluster Galaxy Formation: ACS Observations of the Radio Galaxy TN J1338–1942 at z = 4.1 , 2005, astro-ph/0505610.

[101]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[102]  S. Okamura,et al.  To Appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DISCOVERY OF PRIMEVAL LARGE-SCALE STRUCTURES WITH FORMING CLUSTERS AT REDSHIFT 6 1 , 2004 .

[103]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[104]  S. Okamura,et al.  The Environmental Dependence of Galaxy Properties in the Local Universe: Dependences on Luminosity, Local Density, and System Richness , 2004, astro-ph/0411132.

[105]  Heidelberg,et al.  A search for clusters at high redshift. III. Candidate Hα emitters and EROs in the PKS 1138-262 proto-cluster at z = 2.16 , 2004, astro-ph/0410202.

[106]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[107]  Heidelberg,et al.  A search for clusters at high redshift: IV. Spectroscopy of Hα emitters in a proto-cluster at z = 2.16 , 2004, astro-ph/0410203.

[108]  H. Rottgering,et al.  Discovery of six Lyα emitters near a radio galaxy at z ∼ 5.2 , 2004 .

[109]  H. Rottgering,et al.  Properties of Lyα emitters around the radio galaxy MRC 0316 257 , 2005, astro-ph/0501259.

[110]  S. Okamura,et al.  Large Cosmic Variance in the Clustering Properties of Lyα Emitters at z ≃ 5 , 2004, astro-ph/0403270.

[111]  R. Bouwens,et al.  A large population of ‘Lyman-break’ galaxies in a protocluster at redshift z ≈ 4.1 , 2004, Nature.

[112]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[113]  Subaru Telescope,et al.  The Luminosity Function of Lyα Emitters at Redshift z ∼ 5.7 , 2003, astro-ph/0311528.

[114]  Povilas Palunas,et al.  The Distribution of Lyα-emitting Galaxies at z=2.38. II. Spectroscopy , 2003, astro-ph/0406413.

[115]  J. Brinkmann,et al.  A Map of the Universe , 2003, astro-ph/0310571.

[116]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[117]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[118]  S. Okamura,et al.  Subaru Deep Survey. IV. Discovery of a Large-Scale Structure at Redshift ≃5 , 2003, astro-ph/0302466.

[119]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[120]  H. Rottgering,et al.  A Chandra study of X-ray sources in the field of the z = 2.16 radio galaxy MRC 1138-262 , 2002, astro-ph/0209392.

[121]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[122]  H. Rottgering,et al.  The Most Distant Structure of Galaxies Known: A Protocluster at z = 4.1 , 2002, astro-ph/0203249.

[123]  O. Fèvre,et al.  The Canada-United Kingdom Deep Submillimeter Survey. V. The Submillimeter Properties of Lyman Break Galaxies , 2002, astro-ph/0201181.

[124]  S. Okamura,et al.  The Transformation of Galaxies within the Large-Scale Structure around a z = 0.41 Cluster , 2001, astro-ph/0110354.

[125]  S. Charlot,et al.  Nebular emission from star-forming galaxies , 2001, astro-ph/0101097.

[126]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[127]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[128]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[129]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[130]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[131]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[132]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[133]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[134]  K. S. Himasaku,et al.  Large Cosmic Variance in the Clustering Properties of Lyman Α Emitters at Z ≃ 5 , 2008 .

[135]  G. Williger,et al.  The Distribution of Lyα-Emitting Galaxies at z = 2.38 , 2004 .