Productivity and carbon dynamics in managed Central European forests depending on site conditions and thinning regimes

The responsibilities of modern forest practice and science in Central Europe have changed strongly within the last decades. The awareness of anthropogenic causes for the forest decline in the 1980s and for the rapid climate change has led to a new definition of sustainability in forestry which goes far beyond the traditional focus on wood volume that guided forestry in Central Europe so far (MCPFE, 1993; MCPFE, 2003a, 2003b; Hasenauer, 2004; Baumgarten and von Teuffel, 2005). One of the ‘hot’ topics of the sustainability criteria is the forest carbon budget. On global scale, the forest carbon mitigation potential is estimated to reach 0.35–1.15 Gt C year‐1 in 2030 (IPCC, 2007), which can contribute to buffer the still increasing anthropogenic CO2 emission (9.5–13.5 Gt C year‐1 in 2030; IPCC, 2007). For Germany, the second national forest inventory in 2003 (BMVEL, 2005) revealed an average volume density of 320 m3 ha‐1 (~120 t C/ha; calculation according to Baritz and Strich, 2000), and an increase in standing volume of ~20 per cent compared with the first national inventory in 1990 (only comparing values of former West Germany). Of course, the potential carbon density is limited and will certainly alter under changing climate conditions. Until the end of the 21st century, mean annual temperature in Germany will rise by 1.4–2.1°C combined with changes in precipitation of −10 to +10 per cent (SRES B1 according to Spekat et al., 2007). Along with the climate, other environmental conditions such as soil properties or immission concentrations will also change. The influence of these single and combined effects, as well as feedback reactions on the growth of trees and forest stands is not yet understood in detail, although there are a lot of studies dealing with these topics (e.g. Pretzsch and Dursky, 2002; Bergh et al., 2003; Rötzer et al., 2005; Garcia-Gonzalo et al., 2007). Forest growth models integrate a wide range of system knowledge and can calculate scenarios under different management regimes (Pretzsch et al., 2008). Reviews of these models, their use and possible fields of application can be found in Battaglia and Sands (1998), Bugmann (2001), Le Roux et al. (2001), Porte and Bartelink (2002), Monserud (2003) or Pretzsch et al. (2008). Most directly, however, the carbon sequestration potential of forests is dependent on forest management in terms of species choice and stand density regulation as well as on disturbances. As such factors cannot be tested in realtime scenarios, forest growth models are needed that predict stand development and differentiation in dependence Productivity and carbon dynamics in managed Central European forests depending on site conditions and thinning regimes

[1]  E. Wiedemann Ertragstafeln : wichtiger Holzarten bei verschiedener Durchforstung , 1957 .

[2]  J. Aber,et al.  Fine Roots, Net Primary Production, and Soil Nitrogen Availability: A New Hypothesis , 1985 .

[3]  A. Eshel,et al.  Plant roots : the hidden half , 1991 .

[4]  R. K. Dixon,et al.  Process modeling of forest growth responses to environmental stress , 1991 .

[5]  K. Nadelhoffer,et al.  Fine Root Production Estimates and Belowground Carbon Allocation in Forest Ecosystems , 1992 .

[6]  P. Klinkhamer Plant allometry: The scaling of form and process , 1995 .

[7]  Oscar García,et al.  Evaluating forest Growth Models , 1997 .

[8]  H. Bartelink Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.). , 1997 .

[9]  Robert A. Monserud,et al.  Applicability of the forest stand growth simulator PROGNAUS for the Austrian part of the Bohemian Massif , 1997 .

[10]  G. J. Francis THIRD MINISTERIAL CONFERENCE ON THE PROTECTION OF FORESTS IN EUROPE , 1998 .

[11]  Michael Battaglia,et al.  Process-based forest productivity models and their application in forest management , 1998 .

[12]  R. Baritz,et al.  Forests and the National Greenhouse Gas Inventory of Germany , 2000 .

[13]  H. Bugmann A Review of Forest Gap Models , 2001 .

[14]  Andrea Perlis,et al.  Global forest resources assessment 2000 : main report , 2001 .

[15]  Abraham J. Escobar-Gutiérrez,et al.  Carbon-based models of individual tree growth: A critical appraisal , 2001 .

[16]  Annabel Porté,et al.  Modelling mixed forest growth: a review of models for forest management , 2002 .

[17]  H. Utschig Analyse der Standraumökonomie von Einzelbäumen auf langfristig beobachteten Versuchsflächen – Methoden, Programmentwicklung und erste Ergebnisse – , 2002, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[18]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[19]  Ernst-Detlef Schulze,et al.  Growth and carbon stocks of a spruce forest chronosequence in central Europe , 2002 .

[20]  B. Shipley,et al.  The balanced‐growth hypothesis and the allometry of leaf and root biomass allocation , 2002 .

[21]  A. Eshel,et al.  Root-Shoot Relations: Optimality in Acclimation and Adaptation or the “Emperor’s New Clothes”? , 2002 .

[22]  P. Reich Root–Shoot Relations: Optimality in Acclimation and Adaptation or the ‘‘Emperor’s New Clothes’’? , 2002 .

[23]  H. Pretzscha,et al.  The single tree-based stand simulator SILVA : construction , application and evaluation , 2002 .

[24]  Kelsey S. Milner,et al.  FVSBGC: a hybrid of the physiological model STAND-BGC and the forest vegetation simulator , 2003 .

[25]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[26]  Sune Linder,et al.  Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries , 2003 .

[27]  E. Kublin Einheitliche Beschreibung der Schaftform – Methoden und Programme –BDATPro , 2003, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[28]  H. Asbjornsen,et al.  Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species , 1995, Plant and Soil.

[29]  H. Pretzsch,et al.  Crown allometry and growing space efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. , 2005, Plant biology.

[30]  Hans Pretzsch,et al.  Effects of environmental changes on the vitality of forest stands , 2005, European Journal of Forest Research.

[31]  A. Lehtonen Estimating foliage biomass in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. , 2005, Tree physiology.

[32]  E. Assmann,et al.  Vorläufige Fichten-Ertragstafel für Bayern , 2005, Forstwissenschaftliches Centralblatt.

[33]  J. Liski,et al.  Carbon and decomposition model Yasso for forest soils , 2005 .

[34]  D. Raynal,et al.  Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem , 1994, Plant and Soil.

[35]  M. Baumgarten,et al.  Forschung für eine zukunftsorientierte Waldwirtschaft , 2005 .

[36]  Anssi Ahtikoski,et al.  Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production , 2005 .

[37]  J. Liski,et al.  A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method , 2006 .

[38]  H. J. Praag,et al.  Root turnover in a beech and a spruce stand of the Belgian Ardennes , 1988, Plant and Soil.

[39]  Risto Ojansuu,et al.  Biomass functions for Scots pine, Norway spruce and birch in Finland , 2007 .

[40]  H. Peltola,et al.  Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate , 2007 .

[41]  T. Wutzler,et al.  Modelling mean above and below ground litter production based on yield tables , 2007 .

[42]  G. E. Dixon Essential FVS: A User's Guide to the Forest Vegetation Simulator , 2007 .

[43]  L. Finér,et al.  Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.) , 2007 .

[44]  T. Seifert,et al.  Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate , 2009, European Journal of Forest Research.

[45]  B. Reineking,et al.  Models for forest ecosystem management: a European perspective. , 2007, Annals of botany.

[46]  D. Jacob,et al.  Klimaauswirkungen und Anpassung in Deutschland - Phase 1: Erstellung regionaler Klimaszenarien für Deutschland , 2008 .

[47]  Application and Evaluation of the Growth Simulator SILVA 2 . 2 for Forest Stands , Forest Estates and Large Regions , 2008 .

[48]  Sebastian Rüter,et al.  Potenzial und Dynamik der Kohlenstoffspeicherung in Wald und Holz: Beitrag des deutschen Forst- und Holzsektors zum Klimaschutz , 2009 .

[49]  H. Pretzsch Forest Dynamics, Growth, and Yield , 2010 .