Maximum contrast beamformer for electromagnetic mapping of brain activity

Beamforming technique can be applied to map the neuronal activities from magnetoencephalographic/electroencephalographic (MEG/EEG) recordings. One of the major difficulties of the scalar-type MEG/EEG beamformer is the determination of accurate dipole orientation, which is essential to an effective spatial filter. This paper presents a new beamforming technique which exploits a maximum contrast criterion to maximize the ratio of the neuronal activity estimated in a specified active state to the activity estimated in a control state. This criterion leads to a closed-form solution of the dipole orientation. Experiments with simulation, phantom, and finger-lifting data clearly demonstrate the effectiveness, efficiency, and accuracy of the proposed method

[1]  M Huang,et al.  Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. , 1998, Electroencephalography and clinical neurophysiology.

[2]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[3]  B. Lutkenhoner,et al.  Localization of a dipolar source in a skull phantom: realistic versus spherical model , 1994, IEEE Transactions on Biomedical Engineering.

[4]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[5]  J.C. Mosher,et al.  Recursive MUSIC: A framework for EEG and MEG source localization , 1998, IEEE Transactions on Biomedical Engineering.

[6]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[7]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[8]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[9]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[10]  David Poeppel,et al.  Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique , 2001, IEEE Transactions on Biomedical Engineering.

[11]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[12]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[13]  M. E. Spencer,et al.  A Study of Dipole Localization Accuracy for MEG and EEG using a Human Skull Phantom , 1998, NeuroImage.

[14]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[15]  Yong-Sheng Chen,et al.  Statistical Mapping of Cortical Activities using Minimum-Variance Maximum-Discrimination Spatial Filtering , 2005 .

[16]  A. Ioannides,et al.  Linear transformations of data space in MEG. , 1999, Physics in medicine and biology.

[17]  Gareth R. Barnes,et al.  Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing , 2003, NeuroImage.

[18]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[19]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[20]  M. E. Spencer,et al.  A Study of Dipole Localization Accuracy for MEG and EEG using a Human Skull Phantom , 1998, NeuroImage.

[21]  David Poeppel,et al.  Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction , 2004, IEEE Transactions on Biomedical Engineering.

[22]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[23]  W. Burnside,et al.  Theory of equations , 1886 .

[24]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[25]  D. Cheyne,et al.  Localization of human somatosensory cortex using spatially filtered magnetoencephalography , 2003, Neuroscience Letters.

[26]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[27]  J Gross,et al.  Properties of MEG tomographic maps obtained with spatial filtering , 2003, NeuroImage.

[28]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[29]  Se Robinson,et al.  Functional neuroimaging by Synthetic Aperture Magnetometry (SAM) , 1999 .

[30]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[31]  G. Barnes,et al.  Statistical flattening of MEG beamformer images , 2003, Human brain mapping.