A monotonic method for nonlinear optimal control problems with concave dependence on the state

Initially introduced in the framework of quantum control, the so-called monotonic algorithms have demonstrated very good numerical performance when dealing with bilinear optimal control problems. This article presents a unified formulation that can be applied to more general nonlinear settings compatible with the hypothesis detailed below. In this framework, we show that the well-posedness of the general algorithm is related to a nonlinear evolution equation. We prove the existence of the solution to the evolution equation and give important properties of the optimal control functional. Finally we show how the algorithm works for selected models from the literature. We also compare the algorithm with the gradient algorithm.

[1]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[2]  G. Burton Sobolev Spaces , 2013 .

[3]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[4]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[5]  Friedrich,et al.  Alignment and trapping of molecules in intense laser fields. , 1995, Physical review letters.

[6]  Dominique Sugny,et al.  Field-free molecular orientation by nonresonant and quasiresonant two-color laser pulses , 2008 .

[7]  P. Lions,et al.  Mean field games , 2007 .

[8]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[9]  P. Bucksbaum,et al.  Controlling the shape of a quantum wavefunction , 1999, Nature.

[10]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[11]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[12]  Herschel Rabitz,et al.  Uniform, rapidly convergent algorithm for quantum optimal control of objectives with a positive semidefinite Hessian matrix , 1998 .

[13]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[14]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[15]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[16]  Yukiyoshi Ohtsuki,et al.  Monotonically convergent algorithms for solving quantum optimal control problems of a dynamical system nonlinearly interacting with a control , 2008 .

[17]  David J. Tannor,et al.  Laser cooling of internal degrees of freedom. II , 1997 .

[18]  William H. Press,et al.  Numerical recipes in C , 2002 .

[19]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[20]  Yuichi Fujimura,et al.  Control of quantum dynamics by a locally optimized laser field. Application to ring puckering isomerization , 1994 .

[21]  D. Sugny,et al.  Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field , 2008, 0905.4867.

[22]  Yukiyoshi Ohtsuki,et al.  Non-Markovian effects on quantum optimal control of dissipative wave packet dynamics , 2003 .

[23]  F. M. Kirillova,et al.  Optimal Feedback Control , 1995 .

[24]  Gabriel Turinici,et al.  Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.

[25]  Yvon Maday,et al.  Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..

[26]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[27]  Julien Salomon,et al.  A monotonic algorithm for the optimal control of the Fokker-Planck equation , 2008, 2008 47th IEEE Conference on Decision and Control.

[28]  Herschel Rabitz,et al.  Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion , 2007 .

[29]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[30]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[31]  S. G. Schirmer,et al.  Efficient Algorithm for Optimal Control of Mixed-State Quantum Systems , 1999 .

[32]  H Rabitz,et al.  Coherent control of quantum dynamics: the dream is alive. , 2008, Science.

[33]  Michihiko Sugawara,et al.  General formulation of locally designed coherent control theory for quantum system , 2003 .

[34]  Kazufumi Ito,et al.  Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..

[35]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[36]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[37]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[38]  Julien Salomon,et al.  Optimal molecular alignment and orientation through rotational ladder climbing. , 2005, The Journal of chemical physics.

[39]  Jean-David Benamou,et al.  Mixed L2-Wasserstein Optimal Mapping Between Prescribed Density Functions , 2001 .

[40]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .