Ergodicity Coefficients Defined by Vector Norms

Ergodicity coefficients for stochastic matrices determine inclusion regions for subdominant eigenvalues; estimate the sensitivity of the stationary distribution to changes in the matrix; and bound the convergence rate of methods for computing the stationary distribution. We survey results for ergodicity coefficients that are defined by $p$-norms, for stochastic matrices as well as for general real or complex matrices. We express ergodicity coefficients in the one-, two-, and infinity-norms as norms of projected matrices, and we bound coefficients in any $p$-norm by norms of deflated matrices. We show that two-norm ergodicity coefficients of a matrix $A$ are closely related to the singular values of $A$. In particular, the singular values determine the extreme values of the coefficients. We show that ergodicity coefficients can determine inclusion regions for subdominant eigenvalues of complex matrices, and that the tightness of these regions depends on the departure of the matrix from normality. In the special case of normal matrices, two-norm ergodicity coefficients turn out to be Lehmann bounds.

[1]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[2]  M. Neumann,et al.  The case of equality in the Dobrushin–Deutsch–Zenger bound , 2009 .

[3]  Steve Kirkland,et al.  Coefficients of ergodicity and the scrambling index , 2009 .

[4]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[5]  Ilse C. F. Ipsen,et al.  Mathematical properties and analysis of Google's PageRank , 2008 .

[6]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[7]  Ilse C. F. Ipsen,et al.  Ordinal Ranking for Google's PageRank , 2008, SIAM J. Matrix Anal. Appl..

[8]  Stephen J. Kirkland,et al.  On optimal condition numbers for Markov chains , 2008, Numerische Mathematik.

[9]  Ilse C. F. Ipsen,et al.  PageRank Computation, with Special Attention to Dangling Nodes , 2007, SIAM J. Matrix Anal. Appl..

[10]  Stefano Serra Capizzano,et al.  A General Setting for the Parametric Google Matrix , 2006, Internet Math..

[11]  Ilse C. F. Ipsen,et al.  Convergence Analysis of a PageRank Updating Algorithm by Langville and Meyer , 2005, SIAM J. Matrix Anal. Appl..

[12]  E. Seneta MARKOV AND THE CREATION OF MARKOV CHAINS , 2006 .

[13]  Stefano Serra Capizzano Jordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation , 2005, SIAM J. Matrix Anal. Appl..

[14]  Lars Eldén The Eigenvalues of the Google Matrix , 2004 .

[15]  Marc Artzrouni The Local Coefficient of Ergodicity of a Nonnegative Matrix , 2003, SIAM J. Matrix Anal. Appl..

[16]  Inclusion regions for matrix eigenvalues , 2003 .

[17]  Taher H. Haveliwala,et al.  The Second Eigenvalue of the Google Matrix , 2003 .

[18]  I. I. M. S. Massey Mixing Times with Applications to Perturbed Markov Chains , 2003 .

[19]  Stephen J. Kirkland On a Question Concerning Condition Numbers for Markov Chains , 2002, SIAM J. Matrix Anal. Appl..

[20]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[21]  C. D. Meyer,et al.  Comparison of perturbation bounds for the stationary distribution of a Markov chain , 2001 .

[22]  A. Rhodius On Ergodicity Coefficients of Infinite Stochastic Matrices , 2000 .

[23]  C. D. Meyer,et al.  Markov chain sensitivity measured by mean first passage times , 2000 .

[24]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[25]  Marc Artzrouni,et al.  Nonlinear Matrix Iterative Processes and Generalized Coefficients of Ergodicity , 2000, SIAM J. Matrix Anal. Appl..

[26]  Coefficients of ergodicity for imprimitive matrices , 1999 .

[27]  U. Rothblum,et al.  Convergence of inhomogenous products of matrices and coefficients of ergodicity , 1998 .

[28]  Bryan L. Shader,et al.  Applications of Paz's inequality to perturbation bounds for Markov chains , 1998 .

[29]  A. Rhodius On the maximum of ergodicity coefficients, the Dobrushin ergodicity coefficient, and products of stochastic matrices , 1997 .

[30]  E. Seneta Markov and the birth of chain dependence theory , 1996 .

[31]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[32]  Marc Artzrouni,et al.  A note on the coefficient of ergodicity of a column-allowable nonnegative matrix , 1995 .

[33]  A. Rhodius On explicit forms for ergodicity coefficients , 1993 .

[34]  E. Seneta Sensitivity of finite Markov chains under perturbation , 1993 .

[35]  Uriel G. Rothblum,et al.  Approximations of the spectral radius, corresponding eigenvector, and second largest modulus of an eigenvalue for square, nonnegative, irreducible matrices , 1993 .

[36]  J. Hunter,et al.  Stationary Distributions and Mean First Passage Times of Perturbed Markov Chains , 1992 .

[37]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[38]  A note on upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices , 1988 .

[39]  E. Seneta,et al.  Perturbation of the stationary distribution measured by ergodicity coefficients , 1988, Advances in Applied Probability.

[40]  A. Rhodius,et al.  The maximal value for coefficients of ergodicity , 1988 .

[41]  Uriel G. Rothblum,et al.  Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices , 1985 .

[42]  L. V. D. Heyden,et al.  Perturbation bounds for the stationary probabilities of a finite Markov chain , 1984 .

[43]  Eugene Seneta Explicit forms for ergodicity coefficients and spectrum localization , 1984 .

[44]  Spectrum localization by ergodicity coefficients for stochastic matrices , 1983 .

[45]  C. Tan Coefficients of ergodicity with respect to vector norms , 1983, Journal of Applied Probability.

[46]  C. Tan A functional form for a particular coefficient of ergodicity , 1982, Journal of Applied Probability.

[47]  H. Cohn On a paper by Doeblin on non-homogeneous Markov chains , 1981, Advances in Applied Probability.

[48]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[49]  D. Cooke,et al.  Finite Markov Processes and Their Applications , 1981 .

[50]  E. Seneta Coefficients of ergodicity: structure and applications , 1979, Advances in Applied Probability.

[51]  Y. Pykh Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices , 1978 .

[52]  E. Seneta,et al.  Towards consensus: some convergence theorems on repeated averaging , 1977, Journal of Applied Probability.

[53]  H. Cohn Finite non-homogeneous Markov chains: Asymptotic behaviour , 1976, Advances in Applied Probability.

[54]  J. Hajnal,et al.  On products of non-negative matrices , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  Dean Isaacson,et al.  Markov Chains: Theory and Applications , 1976 .

[56]  J. F. C. Kingman,et al.  Geometrical aspects of the theory of non-homogeneous Markov chains , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[57]  Dean Isaacson,et al.  Positive columns for stochastic matrices , 1974 .

[58]  E. Seneta,et al.  On the historical development of the theory of finite inhomogeneous Markov chains , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  Marius Iosifescu,et al.  ON TWO RECENT PAPERS ON ERGODICITY IN NONHOMOGENEOUS MARKOV CHAINS , 1972 .

[60]  D. Vere-Jones Markov Chains , 1972, Nature.

[61]  Christoph Zenger,et al.  Inclusion domains for the eigenvalues of stochastic matrices , 1971 .

[62]  A. Paz,et al.  Ergodic Theorems for Infinite Probabilistic Tables , 1970 .

[63]  J. Stoer,et al.  Abschätzungen für die eigenwerte positiver linearer operatoren , 1969 .

[64]  A. Paz,et al.  Ergodic theorems for sequences of infinite stochastic matrices , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  Hazel Perfect,et al.  Spectral properties of doubly-stochastic matrices , 1965 .

[66]  T. Sarymsakov Inhomogeneous Markov Chains , 1961 .

[67]  M. Bartlett,et al.  Weak ergodicity in non-homogeneous Markov chains , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  M. S. Bartlett,et al.  The ergodic properties of non-homogeneous finite Markov chains , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[69]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[70]  A. Brauer Limits for the characteristic roots of a matrix. IV: Applications to stochastic matrices , 1952 .

[71]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[72]  S. Bernstein Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes , 1927 .

[73]  S. Bernstein Sur le théorème limite du calcul des probabilités , 1922 .