Shape Classification Using B-spline Approximation and Contour Based Shape Descriptors

In this paper we propose to compare some of contour based shape descriptors like Fourier descriptors, Radial function and Fourier of Radial function after applying a global B-spline approximation to the contours. Applying global B-spline approximation we can smooth and reduce the number of points in the contours. We used this technique for classification of fossil species and especially Brachiopods. The fossils classification has a great importance in palaeontological studies. On the one hand, they make it possible to understand the biodiversity in its morphological dimension. On the other hand, they show the morphological transformations suffered during the biological evolution. We compared the descriptors using City block distance and the recognition rate to measure the discrimination of the descriptors.

[1]  Steffen Goebbels,et al.  Fourier descriptors for broken shapes , 2013, EURASIP Journal on Advances in Signal Processing.

[2]  Cristina Urdiales,et al.  Non-parametric planar shape representation based on adaptive curvature functions , 2002, Pattern Recognit..

[3]  Describing Ammonite shape using Fourier analysis , 2004 .

[4]  Thomas R. Crimmins A Complete Set of Fourier Descriptors for Two-Dimensional Shapes , 1982, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Mandyam D. Srinath,et al.  Orthogonal Moment Features for Use With Parametric and Non-Parametric Classifiers , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Faouzi Ghorbel Stability of invariant Fourier descriptors and its inference in the shape classification , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[7]  Kidiyo Kpalma,et al.  Multiscale contour description for pattern recognition , 2006, Pattern Recognit. Lett..

[8]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Guojun Lu,et al.  A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval , 2002 .

[10]  Wageeh Boles,et al.  Recognition of 2D object contours using the wavelet transform zero-crossing representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Michel Barlaud,et al.  DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation , 2002, International Journal of Computer Vision.

[12]  Guojun Lu,et al.  Study and evaluation of different Fourier methods for image retrieval , 2005, Image Vis. Comput..

[13]  Modélisation des contours fermés:“AN-MORPH” outil mis au point pour maîtriser les composantes des profils latéraux des ostracodes. Perspective d'application systématique , 1999 .

[14]  Sang Uk Lee,et al.  Recognition of 2D Object Contours Using Starting-Point-Independent Wavelet Coefficient Matching , 1998, J. Vis. Commun. Image Represent..

[15]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[17]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[18]  Matti Pietikäinen,et al.  An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[20]  Tim Morris,et al.  Computer Vision and Image Processing: 4th International Conference, CVIP 2019, Jaipur, India, September 27–29, 2019, Revised Selected Papers, Part I , 2020, CVIP.

[21]  Faouzi Ghorbel,et al.  Brachiopods classification based on fusion of global and local complete and stable descriptors , 2015, 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA).

[22]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[23]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  James S. Crampton,et al.  Elliptic Fourier shape analysis of fossil bivalves: some practical considerations , 1995 .

[25]  Zhengwei Yang,et al.  Invariant matching and identification of curves using B-splines curve representation , 1995, IEEE Trans. Image Process..

[26]  Thomas S. Huang,et al.  A Modified Fourier Descriptor for Shape Matching in MARS , 1998, Image Databases and Multi-Media Search.

[27]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Michael Foote,et al.  Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium , 1989, Journal of Paleontology.

[29]  Sadegh Abbasi,et al.  Shape similarity retrieval under affine transforms , 2002, Pattern Recognit..

[30]  A. K. Dewdney Analysis of a steepest-descent image-matching algorithm , 1978, Pattern Recognit..