A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D

We present a new method for the evolution of inextensible vesicles immersed in a Stokesian fluid. We use a boundary integral formulation for the fluid that results in a set of nonlinear integro-differential equations for the vesicle dynamics. The motion of the vesicles is determined by balancing the non-local hydrodynamic forces with the elastic forces due to bending and tension. Numerical simulations of such vesicle motions are quite challenging. On one hand, explicit time-stepping schemes suffer from a severe stability constraint due to the stiffness related to high-order spatial derivatives and a milder constraint due to a transport-like stability condition. On the other hand, an implicit scheme can be expensive because it requires the solution of a set of nonlinear equations at each time step. We present two semi-implicit schemes that circumvent the severe stability constraints on the time step and whose computational cost per time step is comparable to that of an explicit scheme. We discretize the equations by using a spectral method in space, and a multistep third-order accurate scheme in time. We use the fast multipole method (FMM) to efficiently compute vesicle-vesicle interaction forces in a suspension with a large number of vesicles. We report results from numerical experiments that demonstrate the convergence and algorithmic complexity properties of our scheme.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[2]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[3]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[4]  C. Pozrikidis,et al.  Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow , 1995, Journal of Fluid Mechanics.

[5]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[6]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[8]  Mary Catherine A. Kropinski,et al.  Integral equation methods for particle simulations in creeping flows , 1999 .

[9]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[10]  Michael H.G. Duits,et al.  Deformation of giant lipid bilayer vesicles in a shear flow , 1996 .

[11]  Victor Steinberg,et al.  Orientation and dynamics of a vesicle in tank-treading motion in shear flow. , 2005, Physical review letters.

[12]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[13]  Seifert,et al.  Adhesion of vesicles in two dimensions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  Panagiotis Dimitrakopoulos,et al.  Interfacial dynamics in Stokes flow via a three-dimensional fully-implicit interfacial spectral boundary element algorithm , 2007, J. Comput. Phys..

[15]  Lexing Ying,et al.  A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains , 2006, J. Comput. Phys..

[16]  M. Kropinski Numerical Methods for Multiple Inviscid Interfaces in Creeping Flows , 2002 .

[17]  U. Seifert,et al.  Influence of shear flow on vesicles near a wall: A numerical study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  M. Stevens,et al.  Coarse-grained simulations of lipid bilayers. , 2004, The Journal of chemical physics.

[19]  Paj Peter Hilbers,et al.  Vesicle shapes from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[20]  Leslie Greengard,et al.  A fast multipole method for the three-dimensional Stokes equations , 2008, J. Comput. Phys..

[21]  Dominique Barthès-Biesel,et al.  Large deformations and burst of a capsule freely suspended in an elongational flow , 1988, Journal of Fluid Mechanics.

[22]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[23]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[24]  C. Pozrikidis,et al.  On the transient motion of ordered suspensions of liquid drops , 1993, Journal of Fluid Mechanics.

[25]  A. Acrivos,et al.  A numerical study of the deformation and burst of a viscous drop in an extensional flow , 1978, Journal of Fluid Mechanics.

[26]  Hua Zhou,et al.  Deformation of liquid capsules with incompressible interfaces in simple shear flow , 1995, Journal of Fluid Mechanics.

[27]  D. Zorin,et al.  A fast solver for the Stokes equations with distributed forces in complex geometries , 2004 .

[28]  Thomas Y. Hou,et al.  Convergence of a Boundary Integral Method for Water Waves , 1996 .

[29]  C. Pozrikidis,et al.  Effect of membrane bending stiffness on the deformation of capsules in simple shear flow , 2001, Journal of Fluid Mechanics.

[30]  A. Acrivos,et al.  Stokes flow past a particle of arbitrary shape: a numerical method of solution , 1975, Journal of Fluid Mechanics.

[31]  C. Pozrikidis,et al.  Interfacial dynamics for Stokes flow , 2001 .

[32]  C. Pozrikidis,et al.  The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow , 1990, Journal of Fluid Mechanics.

[33]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[34]  M. Kropinski An efficient numerical method for studying interfacial motion in two-dimensional creeping flows , 2001 .

[35]  Luiz C. Wrobel,et al.  Boundary Integral Methods in Fluid Mechanics , 1995 .

[36]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[37]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[38]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[39]  Leslie Greengard,et al.  On the Numerical Evaluation of Electrostatic Fields in Dense Random Dispersions of Cylinders , 1997 .

[40]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[41]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: The boundary integral equations , 1992 .

[42]  G. Rodin,et al.  Fast solution method for three-dimensional Stokesian many-particle problems , 2000 .

[43]  Michael Shelley,et al.  Simulating the dynamics and interactions of flexible fibers in Stokes flows , 2004 .

[44]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.