KANTS: Artifical Ant System for Classification

This paper investigates a new model that takes advantage of the cooperative self-organization of Ant Algorithms to evolve a naturally inspired pattern recognition (and also clustering) method. The approach considers each data item as an ant that changes the environment as it moves through it. The algorithm is successfully applied to well-known classification problems and yields better results than some other classification approaches, like K-Nearest Neighbours and Neural Networks.