Conditioning Algorithms for Exact and Approximate Inference in Causal Networks

We present two algorithms for exact and approximate inference in causal networks. The first algorithm, dynamic conditioning, is a refinement of cutset conditioning that has linear complexity on some networks for which cutset conditioning is exponential. The second algorithm, B-conditioning, is an algorithm for approximate inference that allows one to trade-off the quality of approximations with the computation time. We also present some experimental results illustrating the properties of the proposed algorithms.