Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification.

[1]  José Pedro Santos,et al.  Correlating e-nose responses to wine sensorial descriptors and gas chromatography–mass spectrometry profiles using partial least squares regression analysis , 2007 .

[2]  M. C. Horrillo,et al.  Classification of white wine aromas with an electronic nose. , 2005, Talanta.

[3]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[4]  Ganesh R. Naik,et al.  Introduction: Independent Component Analysis , 2012 .

[5]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[6]  Hadi Parastar,et al.  Is independent component analysis appropriate for multivariate resolution in analytical chemistry , 2012 .

[7]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[8]  ER Orhan,et al.  PROBABILISTIC NEURAL NETWORK , 2013 .

[9]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[10]  Sinclair S. Yee,et al.  Calibration of nonlinear solid-state sensor arrays using multivariate regression techniques , 1992 .

[11]  A. Razungles,et al.  Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis. , 2000, Journal of agricultural and food chemistry.

[12]  José Pedro Santos,et al.  Discrimination of different aromatic compounds in water, ethanol and wine with a thin film sensor array , 2004 .

[13]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[14]  Ingemar Lundström,et al.  Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture , 1991 .

[15]  Russell C. Eberhart,et al.  Neural network PC tools: a practical guide , 1990 .

[16]  José Pedro Santos,et al.  A comparative study of sensor array and GC–MS: application to Madrid wines characterization , 2004 .

[17]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[18]  Udo Weimar,et al.  Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous oragnic vapours in the environment , 1995 .

[19]  Ricardo Gutierrez-Osuna,et al.  Pattern analysis for machine olfaction: a review , 2002 .

[20]  H. T. Nagle,et al.  Handbook of Machine Olfaction , 2002 .

[21]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[22]  Oliver Tomic,et al.  Independent component analysis applied on gas sensor array measurement data , 2003 .

[23]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[24]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[25]  K. Shadan,et al.  Available online: , 2012 .

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  David G. Stork,et al.  Pattern Classification , 1973 .

[28]  Sergio Bermejo,et al.  Independent Component Analysis for Solid-State Chemical Sensor Arrays , 2006, Applied Intelligence.

[29]  Sinclair S. Yee,et al.  Monolithic thin-film metal-oxide gas-sensor arrays with application to monitoring of organic vapors , 1995 .