Enhancing the performance of MOEAs: an experimental presentation of a new fitness guided mutation operator

Abstract Multi-objective evolutionary algorithms (MOEAs) are currently a dynamic field of research that has attracted considerable attention. Mutation operators have been utilized by MOEAs as variation mechanisms. In particular, polynomial mutation (PLM) is one of the most popular variation mechanisms and has been utilized by many well-known MOEAs. In this paper, we revisit the PLM operator and we propose a fitness-guided version of the PLM. Experimental results obtained by non-dominated sorting genetic algorithm II and strength Pareto evolutionary algorithm 2 show that the proposed fitness-guided mutation operator outperforms the classical PLM operator, based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it.

[1]  Ben Niu,et al.  Hybrid learning particle swarm optimizer with genetic disturbance , 2015, Neurocomputing.

[2]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[3]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[4]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[5]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[6]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[7]  Miguel A. Vega-Rodríguez,et al.  A Differential Evolution with Pareto Tournaments for solving the Routing and Wavelength Assignment problem in WDM networks , 2010, IEEE Congress on Evolutionary Computation.

[8]  Michael Weber,et al.  Evolutionary Multiobjective Route Planning in Dynamic Multi-hop Ridesharing , 2011, EvoCOP.

[9]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[10]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[11]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[12]  Francisco Luna,et al.  The software project scheduling problem: A scalability analysis of multi-objective metaheuristics , 2014, Appl. Soft Comput..

[13]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[14]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[15]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[16]  Zhen Ji,et al.  A hybrid immune multiobjective optimization algorithm , 2010, Eur. J. Oper. Res..

[17]  Marco Laumanns,et al.  A unified model for multi-objective evolutionary algorithms with elitism , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[18]  Ernesto Benini,et al.  A Simplex Crossover based evolutionary algorithm including the genetic diversity as objective , 2013, Appl. Soft Comput..

[19]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[20]  Konstantinos Liagkouras,et al.  A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem , 2014, Expert Syst. Appl..

[21]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Konstantinos Liagkouras,et al.  Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics , 2015, Int. J. Inf. Technol. Decis. Mak..

[23]  Antonio J. Nebro,et al.  jMetal: A Java framework for multi-objective optimization , 2011, Adv. Eng. Softw..

[24]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[25]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[26]  Cai Dai,et al.  A new evolutionary algorithm based on contraction method for many-objective optimization problems , 2014, Appl. Math. Comput..

[27]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[28]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[29]  Mark Harman,et al.  Highly Scalable Multi Objective Test Suite Minimisation Using Graphics Cards , 2011, SSBSE.

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[31]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[32]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[33]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[35]  Junichi Suzuki,et al.  A Confidence-Based Dominance Operator in Evolutionary Algorithms for Noisy Multiobjective Optimization Problems , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[36]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[37]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[38]  Antonio J. Nebro,et al.  SMPSO : A New PSO Metaheuristic for Multi-objective Optimization , 2009 .

[39]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[40]  Wentong Cai,et al.  Autonomous Bee Colony Optimization for multi-objective function , 2010, IEEE Congress on Evolutionary Computation.

[41]  Luigi Barone,et al.  An evolution strategy with probabilistic mutation for multi-objective optimisation , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..