On the strength of Sherali-Adams and Nullstellensatz as propositional proof systems

We characterize the strength of the algebraic proof systems Sherali-Adams () and Nullstellensatz () in terms of Frege-style proof systems. Unlike bounded-depth Frege, has polynomial-size proofs of the pigeonhole principle (). A natural question is whether adding to bounded-depth Frege is enough to simulate . We show that , with unary integer coefficients, lies strictly between tree-like and tree-like Resolution. We introduce a weighted version of () and we show that with integer coefficients lies strictly between tree-like and Resolution. Analogous results are shown for using the bijective (i.e. onto and functional) pigeonhole principle and a weighted version of it.

[1]  Alexandros Hollender,et al.  Separations in Proof Complexity and TFNP , 2022, 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).

[2]  Joao Marques-Silva,et al.  Propositional proof systems based on maximum satisfiability , 2021, Artif. Intell..

[3]  Dmitry Sokolov,et al.  The power of negative reasoning , 2021, CCC.

[4]  Tuomas Hakoniemi,et al.  Monomial size vs. Bit-complexity in Sums-of-Squares and Polynomial Calculus , 2021, 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[5]  Maria Luisa Bonet,et al.  Equivalence Between Systems Stronger Than Resolution , 2020, SAT.

[6]  Meena Mahajan,et al.  MaxSAT Resolution and Subcube Sums , 2020, Electron. Colloquium Comput. Complex..

[7]  Javier Larrosa,et al.  Augmenting the Power of (Partial) MaxSat Resolution with Extension , 2020, AAAI.

[8]  Javier Larrosa,et al.  Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems , 2020, SAT.

[9]  Pravesh Kothari,et al.  Semialgebraic Proofs and Efficient Algorithm Design , 2019, Electron. Colloquium Comput. Complex..

[10]  Stefan Dantchev,et al.  Sherali-Adams and the binary encoding of combinatorial principles , 2019, LATIN.

[11]  Samuel R. Buss,et al.  On transformations of constant depth propositional proofs , 2019, Ann. Pure Appl. Log..

[12]  Susanna F. de Rezende,et al.  Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling , 2019, computational complexity.

[13]  Jan Kraj́ıček,et al.  Proof complexity , 2019, Mathematics and Computation.

[14]  Toniann Pitassi,et al.  Lifting Nullstellensatz to monotone span programs over any field , 2018, Electron. Colloquium Comput. Complex..

[15]  Joao Marques-Silva,et al.  MaxSAT Resolution With the Dual Rail Encoding , 2018, AAAI.

[16]  Albert Atserias,et al.  Circular (Yet Sound) Proofs in Propositional Logic , 2018, SAT.

[17]  Albert Atserias,et al.  Proof Complexity Meets Algebra , 2017, ICALP.

[18]  Toniann Pitassi,et al.  Strongly exponential lower bounds for monotone computation , 2017, Electron. Colloquium Comput. Complex..

[19]  Toniann Pitassi,et al.  Exponential Lower Bounds for Monotone Span Programs , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Samuel R. Buss,et al.  Polynomial-size Frege and resolution proofs of st-connectivity and Hex tautologies , 2006, Theor. Comput. Sci..

[21]  Samuel R. Buss,et al.  Separation results for the size of constant-depth propositional proofs , 2005, Ann. Pure Appl. Log..

[22]  Russell Impagliazzo,et al.  Constant-depth Frege systems with counting axioms polynomially simulate Nullstellensatz refutations , 2003, TOCL.

[23]  Alasdair Urquhart,et al.  Simplified Lower Bounds for Propositional Proofs , 1996, Notre Dame J. Formal Log..

[24]  Toniann Pitassi,et al.  An Exponential Separation Between the Parity Principle and the Pigeonhole Principle , 1996, Ann. Pure Appl. Log..

[25]  Russell Impagliazzo,et al.  The relative complexity of NP search problems , 1995, STOC '95.

[26]  Jan Krajícek,et al.  Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  Jan Krajícek,et al.  Lower bounds to the size of constant-depth propositional proofs , 1994, Journal of Symbolic Logic.

[28]  R. Impagliazzo,et al.  Exponential lower bounds for the pigeonhole principle , 1993, computational complexity.

[29]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[30]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[31]  M. Ajtai Parity and the Pigeonhole Principle , 1990 .

[32]  DIMACS Series in Discrete Mathematics and Theoretical Computer Science Lower Bounds on Nullstellensatz Proofs via Designs , 2022 .

[33]  Jan Kraj Cek,et al.  Electronic Colloquium on Computational Complexity an Exponential Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole Principle , 2022 .