Optimal Proof Systems and Sparse Sets

We exhibit a relativized world where NP ∩ SPARSE has no complete sets. This gives the first relativized world where no optimal proof systems exist. We also examine under what reductions NP ∩ SPARSE can have complete sets. We show a close connection between these issues and reductions from sparse to tally sets. We also consider the question as to whether the NP ∩ SPARSE languages have a computable enumeration.

[1]  Ker-I Ko,et al.  On Sets Truth-Table Reducible to Sparse Sets , 1988, SIAM J. Comput..

[2]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[3]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[4]  J. Hartmanis,et al.  Computation Times of NP Sets of Different Densities , 1984, Theor. Comput. Sci..

[5]  Jacobo Torán,et al.  Optimal Proof Systems for Propositional Logic and Complete Sets , 1997, STACS.

[6]  Jan Krajícek,et al.  Propositional proof systems, the consistency of first order theories and the complexity of computations , 1989, Journal of Symbolic Logic.

[7]  Uwe Schöning On Random Reductions from Sparse Sets to Tally Sets , 1993, Inf. Process. Lett..

[8]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1986, Theor. Comput. Sci..

[9]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[10]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1988, Theor. Comput. Sci..

[11]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[12]  Sanjeev Saluja Relativized limitations of left set technique and closure classes of sparse sets , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[13]  Edith Hemaspaandra,et al.  SPARSE Reduces Conjunctively to TALLY , 1995, SIAM J. Comput..

[14]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[15]  Ker-I Ko Distinguishing Conjunctive and Disjunctive Reducibilities by Sparse Sets , 1989, Inf. Comput..

[16]  Lance Fortnow,et al.  The Role of Relativization in Complexity Theory , 1994, Bull. EATCS.

[17]  Nikolai K. Vereshchagin,et al.  Banishing Robust Turing Completeness , 1993, Int. J. Found. Comput. Sci..

[18]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[19]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.