Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing

[1]  S. Kins,et al.  Trafficking in Alzheimer’s Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin , 2018, Molecular Neurobiology.

[2]  Jason R Pugh,et al.  Activity‐dependent plasticity of presynaptic GABAB receptors at parallel fiber synapses , 2018, Synapse.

[3]  S. Kins,et al.  Trafficking in Alzheimer’s Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin , 2017, Molecular Neurobiology.

[4]  A. Frangaj,et al.  Structural biology of GABAB receptor , 2017, Neuropharmacology.

[5]  B. Fakler,et al.  AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability , 2017, Nature Communications.

[6]  C. Akerman,et al.  Neuronal Chloride Regulation via KCC2 Is Modulated through a GABAB Receptor Protein Complex , 2017, The Journal of Neuroscience.

[7]  M. Korte,et al.  Not just amyloid: physiological functions of the amyloid precursor protein family , 2017, Nature Reviews Neuroscience.

[8]  T. Tomita,et al.  Memantine reduces the production of amyloid‐&bgr; peptides through modulation of amyloid precursor protein trafficking , 2017, European journal of pharmacology.

[9]  R. J. Mather,et al.  Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome , 2017, The Journal of Biological Chemistry.

[10]  Hui Zheng,et al.  APP modulates KCC2 expression and function in hippocampal GABAergic inhibition , 2017, eLife.

[11]  Bo Li,et al.  Prefrontal Cortical GABAergic Dysfunction Contributes to Aberrant UP-State Duration in APP Knockout Mice , 2016, Cerebral cortex.

[12]  A. Triller,et al.  Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation , 2016, Cell reports.

[13]  S. Goerdt,et al.  Leda-1/Pianp is targeted to the basolateral plasma membrane by a distinct intracellular juxtamembrane region and modulates barrier properties and E-Cadherin processing. , 2016, Biochemical and biophysical research communications.

[14]  Regina Berretta,et al.  Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions , 2016, PloS one.

[15]  J. Hardy,et al.  The amyloid hypothesis of Alzheimer's disease at 25 years , 2016, EMBO molecular medicine.

[16]  E. Pérez-Garci,et al.  Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics , 2015, Nature Neuroscience.

[17]  S. Wagner,et al.  Visualization of APP and BACE-1 approximation in neurons: new insights into the amyloidogenic pathway , 2015, Nature neuroscience.

[18]  Mazen A. Kheirbek,et al.  Loss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice , 2015, Neuron.

[19]  R. D'Hooge,et al.  Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to SynapticDeficits in Fragile X Syndrome , 2015, Neuron.

[20]  A. Nairn,et al.  Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport , 2014, Molecular biology of the cell.

[21]  G. Dolios,et al.  Differential Release of β-Amyloid from Dendrite- Versus Axon-Targeted APP , 2014, The Journal of Neuroscience.

[22]  Yong Jeong,et al.  GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease , 2014, Nature Medicine.

[23]  E. Isacoff,et al.  APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. , 2014, Cell reports.

[24]  Uwe Schulte,et al.  Auxiliary GABAB Receptor Subunits Uncouple G Protein βγ Subunits from Effector Channels to Induce Desensitization , 2014, Neuron.

[25]  V. Bindokas,et al.  A function for EHD family proteins in unidirectional retrograde dendritic transport of BACE1 and Alzheimer's disease Aβ production. , 2013, Cell reports.

[26]  P. Hortschansky,et al.  Analysis of the Overall Structure of the Multi-Domain Amyloid Precursor Protein (APP) , 2013, PloS one.

[27]  Steven A. Connor,et al.  The Specific α-Neurexin Interactor Calsyntenin-3 Promotes Excitatory and Inhibitory Synapse Development , 2013, Neuron.

[28]  E. Koo,et al.  Activity-Induced Convergence of APP and BACE-1 in Acidic Microdomains via an Endocytosis-Dependent Pathway , 2013, Neuron.

[29]  E. Holzbaur,et al.  JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors , 2013, The Journal of cell biology.

[30]  O. Paulsen,et al.  Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity , 2012, The Journal of physiology.

[31]  C. Schmidt,et al.  Endoplasmic Reticulum Sorting and Kinesin-1 Command the Targeting of Axonal GABAB Receptors , 2012, PloS one.

[32]  T. Smart,et al.  Sushi domains confer distinct trafficking profiles on GABAB receptors , 2012, Proceedings of the National Academy of Sciences.

[33]  M. Gassmann,et al.  Regulation of neuronal GABAB receptor functions by subunit composition , 2012, Nature Reviews Neuroscience.

[34]  L. Mucke,et al.  Alzheimer Mechanisms and Therapeutic Strategies , 2012, Cell.

[35]  B. Fakler,et al.  Extending the Dynamic Range of Label-free Mass Spectrometric Quantification of Affinity Purifications* , 2011, Molecular & Cellular Proteomics.

[36]  J. Harrow,et al.  A conditional knockout resource for the genome-wide study of mouse gene function , 2011, Nature.

[37]  R. Tanzi,et al.  Identification of NEEP21 as a β-Amyloid Precursor Protein-Interacting Protein In Vivo That Modulates Amyloidogenic Processing In Vitro , 2010, The Journal of Neuroscience.

[38]  T. Oertner,et al.  NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1 , 2010, Proceedings of the National Academy of Sciences.

[39]  M. Pangalos,et al.  Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors , 2010, Proceedings of the National Academy of Sciences.

[40]  J. Kapfhammer,et al.  The Sushi Domains of GABAB Receptors Function as Axonal Targeting Signals , 2010, The Journal of Neuroscience.

[41]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[42]  E. Koo,et al.  Amyloid Precursor Protein Trafficking, Processing, and Function* , 2008, Journal of Biological Chemistry.

[43]  P. S. St George-Hyslop,et al.  The in Vivo Brain Interactome of the Amyloid Precursor Protein*S , 2008, Molecular & Cellular Proteomics.

[44]  M. Korte,et al.  The Secreted β-Amyloid Precursor Protein Ectodomain APPsα Is Sufficient to Rescue the Anatomical, Behavioral, and Electrophysiological Abnormalities of APP-Deficient Mice , 2007, The Journal of Neuroscience.

[45]  W. Nelson,et al.  Synapses: sites of cell recognition, adhesion, and functional specification. , 2007, Annual review of biochemistry.

[46]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[47]  G. Woodhall,et al.  Depression of Glutamate and GABA Release by Presynaptic GABAB Receptors in the Entorhinal Cortex in Normal and Chronically Epileptic Rats , 2007, Neurosignals.

[48]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[49]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[50]  K. Beyreuther,et al.  Subcellular Trafficking of the Amyloid Precursor Protein Gene Family and Its Pathogenic Role in Alzheimer’s Disease , 2006, Neurodegenerative Diseases.

[51]  T. Oertner,et al.  Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants , 2006, Neuron.

[52]  Yaakov Stern,et al.  Incidence and Predictors of Seizures in Patients with Alzheimer's Disease , 2006, Epilepsia.

[53]  Gordon S. Rule,et al.  Fundamentals of Protein NMR Spectroscopy , 2005 .

[54]  S. DeKosky,et al.  Changes in hippocampal GABABR1 subunit expression in Alzheimer’s patients: association with Braak staging , 2005, Acta Neuropathologica.

[55]  Brian O. Smith,et al.  Structural Analysis of the Complement Control Protein (CCP) Modules of GABAB Receptor 1a , 2004, Journal of Biological Chemistry.

[56]  M. Gallagher,et al.  SGS742: the first GABA(B) receptor antagonist in clinical trials. , 2004, Biochemical pharmacology.

[57]  Y. Humeau,et al.  Redistribution of GABAB(1) Protein and Atypical GABAB Responses in GABAB(2)-Deficient Mice , 2004, The Journal of Neuroscience.

[58]  M. Pangalos,et al.  Phosphorylation and Chronic Agonist Treatment Atypically Modulate GABAB Receptor Cell Surface Stability* , 2004, Journal of Biological Chemistry.

[59]  S. Kins,et al.  APP on the move. , 2002, Trends in molecular medicine.

[60]  L. Prézeau,et al.  C-Terminal Interaction Is Essential for Surface Trafficking But Not for Heteromeric Assembly of GABAB Receptors , 2001, The Journal of Neuroscience.

[61]  B. Sommer,et al.  Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease , 2000, Nature Neuroscience.

[62]  J. Treanor,et al.  Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. , 1999, Science.

[63]  E. Ikonen,et al.  Intracellular routing of human amyloid protein precursor: Axonal delivery followed by transport to the dendrites , 1995, Journal of neuroscience research.

[64]  D. Selkoe,et al.  Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons , 1995, The Journal of cell biology.

[65]  A. Gronenborn,et al.  A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. , 1993, Science.

[66]  J. Penney,et al.  Cortical GABAB and GABAA receptors in Alzheimer's disease , 1987, Neurology.

[67]  D. Benke Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. , 2010, Advances in pharmacology.