Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes

[1]  K. Kang,et al.  A theoretical framework for oxygen redox chemistry for sustainable batteries , 2022, Nature Sustainability.

[2]  Yong‐Sheng Hu,et al.  Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries , 2021, Nature Sustainability.

[3]  P. Bruce,et al.  Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes , 2021, Nature Communications.

[4]  Yong‐Mook Kang,et al.  Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery , 2021, Nature Communications.

[5]  Haoshen Zhou,et al.  Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries. , 2021, Angewandte Chemie.

[6]  P. Bruce,et al.  The role of O2 in O-redox cathodes for Li-ion batteries , 2021, Nature Energy.

[7]  Xiangfeng Liu,et al.  Lattice Modulation by Ca/P Dual-Doping for Fast and Stable Li+ Intercalation/Extraction in High-Voltage LiCoO2 , 2021 .

[8]  W. Luo,et al.  Mg‐Pillared LiCoO 2 : Towards Stable Cycling at 4.6 V , 2021, Angewandte Chemie.

[9]  Yunhui Huang,et al.  Mg-pillared LiCoO2: Towards Stable Cycling at 4.6 V. , 2020, Angewandte Chemie.

[10]  D. Kitchaev,et al.  Delocalized Metal-Oxygen π-Redox Is the Origin of Anomalous Nonhysteretic Capacity in Li-Ion and Na-Ion Cathode Materials. , 2020, Journal of the American Chemical Society.

[11]  P. Bruce,et al.  First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk , 2020, Nature Energy.

[12]  William E. Gent,et al.  Design Rules for High-Valent Redox in Intercalation Electrodes , 2020 .

[13]  K. Kang,et al.  Anionic Redox Activity Regulated by Transition Metal in Lithium‐Rich Layered Oxides , 2020, Advanced Energy Materials.

[14]  L. Gu,et al.  A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration , 2020 .

[15]  Sung Kwan Park,et al.  Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes , 2020, Nature Materials.

[16]  P. Bruce,et al.  Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes , 2019, Nature.

[17]  P. Bruce,et al.  Nature of the “Z”-phase in layered Na-ion battery cathodes , 2019, Energy & Environmental Science.

[18]  J. Tarascon,et al.  Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry , 2019, Nature Energy.

[19]  J. Tarascon,et al.  Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry , 2019, Nature Energy.

[20]  Liquan Chen,et al.  Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V , 2019, Nature Energy.

[21]  J. Janek,et al.  Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from In Situ Gas Analysis and Operando X-Ray Diffraction. , 2019, ChemSusChem.

[22]  A. Yamada,et al.  Coulombic self-ordering upon charging a large-capacity layered cathode material for rechargeable batteries , 2019, Nature Communications.

[23]  Yong Yang,et al.  Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li2RuO3 , 2019, The Journal of Physical Chemistry C.

[24]  C. Wolverton,et al.  Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage , 2019, Nature Communications.

[25]  Haoshen Zhou,et al.  Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage , 2019, Energy & Environmental Science.

[26]  Gerbrand Ceder,et al.  Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides , 2019, Nature Materials.

[27]  K. Hongo,et al.  First-Principles Study of Structural Transitions in LiNiO2 and High-Throughput Screening for Long Life Battery , 2019, The Journal of Physical Chemistry C.

[28]  H. Gasteiger,et al.  Origin of High Capacity and Poor Cycling Stability of Li-Rich Layered Oxides: A Long-Duration in Situ Synchrotron Powder Diffraction Study , 2018 .

[29]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[30]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[31]  William E. Gent,et al.  Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides , 2017, Nature Communications.

[32]  Anton Van der Ven,et al.  Role of Crystal Symmetry in the Reversibility of Stacking-Sequence Changes in Layered Intercalation Electrodes. , 2017, Nano letters.

[33]  A. Yamada,et al.  Molecular Orbital Principles of Oxygen-Redox Battery Electrodes. , 2017, ACS applied materials & interfaces.

[34]  Adam Hawkes,et al.  The future cost of electrical energy storage based on experience rates , 2017, Nature Energy.

[35]  M. Sprung,et al.  Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging , 2017, Nature Energy.

[36]  Dean J. Miller,et al.  In Operando XRD and TXM Study on the Metastable Structure Change of NaNi1/3Fe1/3Mn1/3O2 under Electrochemical Sodium‐Ion Intercalation , 2016 .

[37]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[38]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[39]  C. Delmas Battery materials: Operating through oxygen. , 2016, Nature chemistry.

[40]  Jin Ma,et al.  Understanding the Stability for Li‐Rich Layered Oxide Li2RuO3 Cathode , 2016 .

[41]  Muratahan Aykol,et al.  van der Waals Interactions in Layered Lithium Cobalt Oxides , 2015 .

[42]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[43]  Liquan Chen,et al.  Atomic Structure of Li2MnO3 after Partial Delithiation and Re‐Lithiation , 2013 .

[44]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[45]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[46]  L. Nazar,et al.  X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1) , 2006 .

[47]  G. Ceder,et al.  Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. , 2004, Chemical reviews.

[48]  C. Delmas,et al.  The LixNi1−yMgyO2 (y=0.05, 0.10) system: structural modifications observed upon cycling , 2000 .

[49]  J. Dahn,et al.  Layered LiCoO2 with a Different Oxygen Stacking (O2 Structure) as a Cathode Material for Rechargeable Lithium Batteries , 2000 .

[50]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[51]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[54]  Ning Qin,et al.  Hierarchical Doping Engineering with Active/Inert Dual Elements Stabilizes LiCoO2 to 4.6 V , 2022 .

[55]  A. Majid,et al.  Cathode Material in Lithium-Ion Battery , 2019, Nanostructured Materials for Next-Generation Energy Storage and Conversion.

[56]  Hyun-Soo Kim,et al.  Optimization of Lithium in Li 1+x [Mn 0.720 Ni 0.175 Co 0.105 ]O 2 as a Cathode Material for Lithium Ion Battery , 2011 .

[57]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[58]  C. Delmas,et al.  Structural characterisation of the highly deintercalatedLixNi1.02O2 phases (with x ≤ 0.30) , 2001 .

[59]  L. Nazar,et al.  X-ray / Neutron Diffraction and Electrochemical Studies of Lithium De / Re-Intercalation in Li 1x Co 1 / 3 Ni 1 / 3 Mn 1 / 3 O 2 ( x ) 0 f 1 ) , 2022 .