The asymptotic posterior normality of the latent trait for polytomous IRT models

Chang and Stout (1993) presented a derivation of the asymptotic posterior normality of the latent trait given examinee responses under nonrestrictive nonparametric assumptions for dichotomous IRT models. This paper presents an extention of their results to polytomous IRT models in a fairly straightforward manner. In addition, a global information function is defined, and the relationship between the global information function and the currently used information functions is discussed. An information index that combines both the global and local information is proposed for adaptive testing applications.

[1]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[2]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[3]  David Thissen,et al.  A taxonomy of item response models , 1986 .

[4]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[5]  G. Masters,et al.  Rating scale analysis , 1982 .

[6]  Hua-Hua Chang,et al.  The asymptotic posterior normality of the latent trait in an IRT model , 1993 .

[7]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[8]  Mark Wilson,et al.  The partial credit model and null categories , 1993 .

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  David J. Weiss,et al.  Improving Measurement Quality and Efficiency with Adaptive Testing , 1982 .

[11]  David Thissen,et al.  A response model for multiple choice items , 1984 .

[12]  Frederic M. Lord Robbins-Monro Procedures for Tailored Testing , 1971 .

[13]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[14]  F. Samejima A General Model for Free Response Data. , 1972 .

[15]  G. Masters A rasch model for partial credit scoring , 1982 .

[16]  P. Holland On the sampling theory roundations of item response theory models , 1990 .

[17]  D. Andrich A rating formulation for ordered response categories , 1978 .

[18]  A. M. Walker On the Asymptotic Behaviour of Posterior Distributions , 1969 .

[19]  Hua-Hua Chang,et al.  A Global Information Approach to Computerized Adaptive Testing , 1996 .

[20]  Roderick P. McDonald,et al.  Linear Versus Models in Item Response Theory , 1982 .

[21]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[22]  Brian W. Junker,et al.  Essential independence and likelihood-based ability estimation for polytomous items , 1991 .

[23]  Eugene G. Johnson The NAEP 1992 technical report , 1994 .