High-frequency monitoring of phytoplankton dynamics within the European water framework directive: application to metalimnetic cyanobacteria

Large, sub-alpine, stratified lakes are directly within the scope of the European Water Framework Directive (WFD) and need adapted monitoring systems. Moreover, anthropogenic eutrophication was frequently the main cause of their water quality degradation in the 20th century. This paper is primarily aimed at demonstrating how in situ sensor-equipped buoys could be the base of monitoring designs to support the WFD objectives. The core of this paper, mainly methodological, focuses on single-depth, high frequency (4 per hour) fluorescence measurements. It shows that the internal wave pattern provides additional information to the single-depth time series to assess phytoplankton dynamics in a stratified water column displaying strong, vertical biomass heterogeneity. The paper deals with the following three aspects: (1) definition of an indicator to determine whether or not the sensor actually detects the metalimnetic fluorescence peak, (2) vertical representation of chlorophyll distribution from single-depth series; (3) time evolution of the fluorescence peak (maximum value, depth and associated temperature, peak width).

[1]  M. Merrifield,et al.  Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii , 2006 .

[2]  B. Liljebladh,et al.  The Internal Seiches in Gullmar Fjord. Part I: Dynamics , 2001 .

[3]  S I Rogers,et al.  Assessing the suitability of OSPAR EcoQOs for eutrophication vs ICES criteria for England and Wales. , 2005, Marine pollution bulletin.

[4]  O. Anneville,et al.  Central European water quality indices applied to long-term data from peri-alpine lakes: test and possible improvements , 2009, Hydrobiologia.

[5]  Branislav Vrana,et al.  A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive. , 2006, Talanta.

[6]  D. Dietrich,et al.  Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany , 2009 .

[7]  O. Anneville,et al.  Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach , 2002 .

[8]  C. Sammari,et al.  Sea level variability and tidal resonance in the Gulf of Gabes, Tunisia , 2006 .

[9]  S. Jacquet,et al.  Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study , 2002 .

[10]  H. Hudnell,et al.  The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. , 2010, Toxicon : official journal of the International Society on Toxinology.

[11]  Hugo Sarmento,et al.  Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes , 2008, Journal of Applied Phycology.

[12]  J G Ferreira,et al.  Monitoring of coastal and transitional waters under the E.U. Water Framework Directive , 2007, Environmental monitoring and assessment.

[13]  Philippe Quevauviller,et al.  The Water Framework Directive , 2008 .

[14]  Jan Köhler,et al.  Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies , 2005 .

[15]  Ken T.M. Wong,et al.  Real time observations of coastal algal blooms by an early warning system , 2005 .

[16]  Jacob Carstensen,et al.  Statistical principles for ecological status classification of Water Framework Directive monitoring data. , 2007, Marine pollution bulletin.

[17]  Ó. Ferreira,et al.  The autonomous Simpatico system for real-time continuous water-quality and current velocity monitoring: examples of application in three Portuguese estuaries , 2009 .

[18]  M. Schmid,et al.  The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zürich. , 2006, The New phytologist.

[19]  Nico Salmaso,et al.  Long‐term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations , 2010 .

[20]  S. Benford,et al.  Real‐time physical data acquisition through a remote sensing platform on a polar lake , 2004 .

[21]  B. Tassin,et al.  Forecasting of water quality in lakes: a predictive use of a one dimensional model. Application to lake Bourget (Savoie, France) , 2004, Hydrobiologia.

[22]  U. Gaedke,et al.  Interannual variability of phytoplankton productivity and related parameters in Lake Constance: no response to decreased phosphorus loading? , 1991 .

[23]  J. Mouchel,et al.  Modelling the seasonal evolution of temperature in lake Bourget (France) [MODELISATION DE L'EVOLUTION THERMIQUE SAISONNIERE DU LAC DU BOURGET (SAVOIE, FRANCE)] , 1989 .

[24]  Jean-Marie Mouchel,et al.  Modélisation de l'évolution thermique saisonnière du lac du Bourget , 1989 .

[25]  M. Simona,et al.  Phytoplankton as an Indicator of the Water Quality of the Deep Lakes South of the Alps , 2006, Hydrobiologia.

[26]  M. Feuillade,et al.  Occurrence of toxic Planktothrix rubescens blooms in lake Nantua, France. , 2004, Toxicon : official journal of the International Society on Toxinology.

[27]  Ondes internes du lac du Bourget: analyse des observations par des modèles linéaires , 1996 .

[28]  B. Tassin,et al.  Tracing calcite precipitation with specific conductance in a hard water alpine lake (Lake Bourget) , 2000 .

[29]  H. Dau,et al.  A fluorometric method for the differentiation of algal populations in vivo and in situ , 2004, Photosynthesis Research.

[30]  F. Schmitt,et al.  Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy , 2007, Hydrobiologia.

[31]  P. Tréguer,et al.  High frequency monitoring of the coastal marine environment using the MAREL buoy. , 2004, Journal of environmental monitoring : JEM.

[32]  David Mills,et al.  Smartbuoy: A marine environmental monitoring buoy with a difference , 2003 .

[33]  C. Avois-Jacquet,et al.  Variations in the Microcystin Production of Planktothrix rubescens (Cyanobacteria) Assessed from a Four-Year Survey of Lac du Bourget (France) and from Laboratory Experiments , 2005, Microbial Ecology.

[34]  W. Bauwens,et al.  Application of Automated Measurement Stations for Continuous Water Quality Monitoring of the Dender River in Flanders, Belgium , 2005, Environmental monitoring and assessment.

[35]  O. Anneville,et al.  Phosphorus decrease and climate variability : mediators of synchrony in phytoplankton changes among European peri-alpine lakes , 2005 .

[36]  Ondes internes et m elange turbulent dans le lac du Bourget , 2006 .

[37]  Dana R. Kester,et al.  Time-series observations during the low sub-surface oxygen events in Narragansett Bay during summer 2001 , 2005 .

[38]  O. Anneville,et al.  The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget) , 2005 .

[39]  J. Ferreirab,et al.  An integrated methodology for assessment of estuarine trophic status , 2003 .

[40]  T. E. Cloete,et al.  Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA , 2006 .

[41]  O. Anneville,et al.  Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years , 2006 .

[42]  M. Dokulil,et al.  Cyanobacterial dominance in lakes , 2000, Hydrobiologia.

[43]  J. Elliott,et al.  Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water , 2006 .

[44]  U. Dorigo,et al.  Spatial variability in the abundance and composition of the free-living bacterioplankton community in the pelagic zone of Lake Bourget (France). , 2006, FEMS microbiology ecology.

[45]  Jamie Bartram,et al.  Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management Chapter 2. Cyanobacteria in the Environment 2.1 Nature and Diversity 2.1.1 Systematics , 2022 .

[46]  D. Dietrich,et al.  Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus). , 2006, Aquatic toxicology.

[47]  Other Directive 2000/60/EC of the European Parliament and of The Council of 23 October 2000 establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive) , 2000 .

[48]  A. Walsby,et al.  Viability of the cyanobacterium Planktothrix rubescens in the cold and dark, related to over-winter survival and summer recruitment in Lake Zürich , 2008 .

[49]  O. Anneville,et al.  Phytoplankton productivity increased in Lake Geneva despite phosphorus loading reduction , 2009 .

[50]  A. M. Davies,et al.  Influence of open boundary conditions and sill height upon seiche motion in a gulf , 2009 .

[51]  Eduard Interwies,et al.  The need for new monitoring tools to implement the WFD , 2005 .

[52]  M. Dokulil,et al.  Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data , 2005 .

[53]  A. Walsby,et al.  Light-dependent growth rate determines changes in the population of Planktothrix rubescens over the annual cycle in Lake Zürich, Switzerland. , 2002, The New phytologist.

[54]  U. Lemmin,et al.  Tests of an extension to internal seiches of Defant's procedure for determination of surface seiche characteristics in real lakes† , 1986 .