Mapping of Ising models onto injection-locked laser systems.

We propose a mapping protocol to implement Ising models in injection-locked laser systems. The proposed scheme is based on optical coherent feedback and can be potentially applied for large-scale Ising problems.

[1]  H. Haug Quantum-Mechanical Rate Equations for Semiconductor Lasers , 1969 .

[2]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Optical FM signal amplification and FM noise reduction in an injection locked AlGaAs semiconductor laser , 1981 .

[5]  S. Kobayashi,et al.  Injection locking in AlGaAs semiconductor laser , 1981 .

[6]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[7]  Hermann A. Haus,et al.  Quantum noise of an injection-locked laser oscillator , 1984 .

[8]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[9]  Machida,et al.  Amplitude squeezing in a pump-noise-suppressed laser oscillator. , 1986, Physical review. A, General physics.

[10]  B. Apolloni,et al.  Quantum stochastic optimization , 1989 .

[11]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[12]  Yamamoto,et al.  Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  Machida,et al.  Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[14]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[15]  Viktor Dotsenko,et al.  Introduction to the Replica Theory of Disordered Statistical Systems: Preface , 2000 .

[16]  Viktor Dotsenko Introduction to the Replica Theory of Disordered Statistical Systems: Conclusions , 2000 .

[17]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[18]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[19]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[20]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[21]  Erio Tosatti,et al.  Quantum to classical and back , 2007 .

[22]  R. Somma,et al.  Quantum approach to classical statistical mechanics. , 2006, Physical review letters.

[23]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[24]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[25]  Z. Man,et al.  Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED , 2009 .

[26]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[27]  Yoshihisa Yamamoto,et al.  Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates , 2011 .

[28]  Li Zhang,et al.  Optimal allocation of sensing duration among multiple primary channels in cognitive radio , 2011, IEICE Electron. Express.

[29]  K. Yan,et al.  Accelerated optimization problem search using Bose–Einstein condensation , 2011 .

[30]  Masahide Sasaki,et al.  Quantum information technology , 2011 .