Mapping of Ising models onto injection-locked laser systems.
暂无分享,去创建一个
[1] H. Haug. Quantum-Mechanical Rate Equations for Semiconductor Lasers , 1969 .
[2] S. Personick. Receiver design for digital fiber optic communication systems, II , 1973 .
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Optical FM signal amplification and FM noise reduction in an injection locked AlGaAs semiconductor laser , 1981 .
[5] S. Kobayashi,et al. Injection locking in AlGaAs semiconductor laser , 1981 .
[6] F. Barahona. On the computational complexity of Ising spin glass models , 1982 .
[7] Hermann A. Haus,et al. Quantum noise of an injection-locked laser oscillator , 1984 .
[8] K. Binder,et al. Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .
[9] Machida,et al. Amplitude squeezing in a pump-noise-suppressed laser oscillator. , 1986, Physical review. A, General physics.
[10] B. Apolloni,et al. Quantum stochastic optimization , 1989 .
[11] Ray,et al. Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.
[12] Yamamoto,et al. Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[13] Machida,et al. Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[14] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[15] Viktor Dotsenko,et al. Introduction to the Replica Theory of Disordered Statistical Systems: Preface , 2000 .
[16] Viktor Dotsenko. Introduction to the Replica Theory of Disordered Statistical Systems: Conclusions , 2000 .
[17] 西森 秀稔. Statistical physics of spin glasses and information processing : an introduction , 2001 .
[18] Erio Tosatti,et al. Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .
[19] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[20] T. Hogg,et al. Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.
[21] Erio Tosatti,et al. Quantum to classical and back , 2007 .
[22] R. Somma,et al. Quantum approach to classical statistical mechanics. , 2006, Physical review letters.
[23] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[24] B. Chakrabarti,et al. Quantum Annealing and Related Optimization Methods , 2008 .
[25] Z. Man,et al. Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED , 2009 .
[26] A. Young,et al. First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.
[27] Yoshihisa Yamamoto,et al. Kinetic Monte Carlo study of accelerated optimization problem search using Bose-Einstein condensates , 2011 .
[28] Li Zhang,et al. Optimal allocation of sensing duration among multiple primary channels in cognitive radio , 2011, IEICE Electron. Express.
[29] K. Yan,et al. Accelerated optimization problem search using Bose–Einstein condensation , 2011 .
[30] Masahide Sasaki,et al. Quantum information technology , 2011 .