A locally anisotropic fluid–structure interaction remeshing strategy for thin structures with application to a hinged rigid leaflet
暂无分享,去创建一个
Alessandro Reali | Alessandro Veneziani | Ferdinando Auricchio | Adrien Lefieux | F. Auricchio | A. Lefieux | A. Reali | A. Veneziani
[1] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[2] Brummelen van Eh,et al. Flux evaluation in primal and dual boundary-coupled problems , 2011 .
[3] Ralf Gritzki,et al. Stabilized FEM with Anisotropic Mesh Refinement for the Oseen Problem , 2006 .
[4] P. Jamet. Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .
[5] L. Demkowicz. A note on symmetry boundary conditions in finite element methods , 1991 .
[6] Alexei Lozinski,et al. A fictitious domain approach for the Stokes problem based on the extended finite element method , 2013, 1303.6850.
[7] Ekkehard Ramm,et al. Large deformation fluid structure interaction - advances in ALE methods and new fixed grid approaches , 2006 .
[8] Michal Křížek,et al. On semiregular families of triangulations and linear interpolation , 1991 .
[9] Simona Perotto,et al. Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..
[10] K. Zee,et al. Goal-Oriented A-Posteriori Error Estimation and Adaptivity for Fluid-Structure Interaction , 2008 .
[11] B. Maury,et al. A smooth extension method , 2013 .
[12] S. Sherwin,et al. Comparison of various fluid-structure interaction methods for deformable bodies , 2007 .
[13] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[14] Gianni Pedrizzetti,et al. Flow-driven opening of a valvular leaflet , 2006, Journal of Fluid Mechanics.
[15] I. Babuska,et al. ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .
[16] N. Santos. Numerical methods for fluid-structure interaction problems with valves , 2007 .
[17] Role of inertia in the interaction between oscillatory flow and a wall-mounted leaflet. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] D. Eppstein,et al. MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .
[19] Long Chen. FINITE ELEMENT METHOD , 2013 .
[20] Weizhang Huang,et al. Conditioning of finite element equations with arbitrary anisotropic meshes , 2012, Math. Comput..
[21] W. Wall,et al. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .
[22] Jean-Frédéric Gerbeau,et al. AN EMBEDDED SURFACE METHOD FOR VALVE SIMULATION. APPLICATION TO STENOTIC AORTIC VALVE ESTIMATION , 2005 .
[23] Patrick D. Anderson,et al. A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..
[24] Jean-Francois Hetu,et al. A finite element immersed boundary method for fluid flow around rigid objects , 2011 .
[25] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[26] Fabio Nobile,et al. Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .
[27] Antti Hannukainen,et al. The maximum angle condition is not necessary for convergence of the finite element method , 2012, Numerische Mathematik.
[28] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[29] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[30] I. Procaccia,et al. Identification and calculation of the universal asymptote for drag reduction by polymers in wall bounded turbulence. , 2005, Physical review letters.
[31] V. Brummelen. Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .
[33] Antonio J. Gil,et al. The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..
[34] Gianni Pedrizzetti. Kinematic characterization of valvular opening. , 2005, Physical review letters.
[35] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[36] L. Heltai,et al. Variational implementation of immersed finite element methods , 2011, 1110.2063.
[37] Bertrand Maury,et al. A Fat Boundary Method for the Poisson Problem in a Domain with Holes , 2002, J. Sci. Comput..
[38] Trond Kvamsdal,et al. Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .
[39] Thomas Apel,et al. Stability of discretizations of the Stokes problem on anisotropic meshes , 2003, Math. Comput. Simul..
[40] Thomas Richter,et al. A Locally Modified Parametric Finite Element Method for Interface Problems , 2014, SIAM J. Numer. Anal..
[41] Serge Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[42] Alessandro Reali,et al. A study on unfitted 1D finite element methods , 2014, Comput. Math. Appl..
[43] Yuri Bazilevs,et al. Computational Fluid-Structure Interaction: Methods and Applications , 2013 .
[44] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[45] Rolf Rannacher,et al. ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .
[46] A. Lew,et al. A discontinuous‐Galerkin‐based immersed boundary method , 2008 .
[47] W. Wall,et al. A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .
[48] P. G. Ciarlet,et al. Numerical Methods for Fluids, Part 3 , 2003 .
[49] P. Hansbo,et al. A cut finite element method for a Stokes interface problem , 2012, 1205.5684.
[50] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[51] Hamilton-Jacobi Equations,et al. Mixed Finite Element Methods for , 1996 .
[52] F. Brezzi,et al. An "immersed" finite element method based on a locally anisotropic remeshing for the incompressible Stokes problem , 2015 .