Tubular MXene/SS Membranes for Highly Efficient H2/CO2 Separation

Accurately constructing membranes based on two-dimensional (2D) materials on commercial porous substrates remains a significant challenge for H2 purification. In this work, a series of tubular 2D MXene membranes are prepared on commercial porous stainless steel substrates via fast electrophoretic deposition. Compared with other methods, such as filtration or drop coating, etc. such preparation route shows the advantages of simple operation, high efficiency for membrane assembly (within 5 min) with attractive reproducibility, and ease for scale-up. The tubular MXene membranes present excellent gas separation performance with hydrogen permeance of 1290 GPU and H2/CO2 selectivity of 55. Furthermore, the membrane displays extremely stable performance during the long-term test for more than 1250 h, and about 93% of the membranes from one batch have exceeded the DOE target for CO2 capture. Most importantly, this work provides a valuable referential significance for other types of 2D materials-based membranes for future application development.

[1]  Chongli Zhong,et al.  Large‐area vacuum‐treated ZIF ‐8 mixed‐matrix membrane for highly efficient methane/nitrogen separation , 2022, AIChE Journal.

[2]  Kai Qu,et al.  Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation , 2021 .

[3]  Shiguang Li,et al.  Printed graphene oxide-based membranes for gas separation and carbon capture , 2021, Chemical Engineering Journal.

[4]  Haihui Wang,et al.  Fast fabrication of freestanding MXene-ZIF-8 dual-layered membranes for H2/CO2 separation , 2021, Journal of Membrane Science.

[5]  Haihui Wang,et al.  Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification , 2021 .

[6]  J. Caro,et al.  Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving , 2021 .

[7]  Shaomin Liu,et al.  Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation , 2020, Frontiers of Chemical Science and Engineering.

[8]  Rong Wu,et al.  Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer , 2020 .

[9]  Kang Huang,et al.  Two-dimensional material separation membranes for renewable energy purification, storage, and conversion , 2020 .

[10]  G. Chinga-Carrasco,et al.  Nanocomposite membranes with high-charge and size-screened phosphorylated nanocellulose fibrils for CO2 separation , 2020 .

[11]  I. Ortiz,et al.  Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams , 2020 .

[12]  J. Caro,et al.  High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. , 2020, Journal of the American Chemical Society.

[13]  Chen Zhang,et al.  Ultra‐thin skin carbon hollow fiber membranes for sustainable molecular separations , 2019, AIChE Journal.

[14]  X. Tan,et al.  Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants , 2019, Chemical Engineering Journal.

[15]  Haihui Wang,et al.  Solvent-free route for metal-organic framework membranes growth aiming for efficient gas separation , 2018, AIChE Journal.

[16]  F. Kapteijn,et al.  Facile manufacture of porous organic framework membranes for precombustion CO2 capture , 2018, Science Advances.

[17]  J. Caro,et al.  Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. , 2018, Journal of the American Chemical Society.

[18]  Gongpin Liu,et al.  2D MXene Nanofilms with Tunable Gas Transport Channels , 2018, Advanced Functional Materials.

[19]  T. Ben,et al.  A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H2/CO2 separation selectivity. , 2018, Dalton transactions.

[20]  Z. Lai,et al.  Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation , 2018 .

[21]  M. Swihart,et al.  Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation , 2018 .

[22]  Yury Gogotsi,et al.  MXene molecular sieving membranes for highly efficient gas separation , 2018, Nature Communications.

[23]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[24]  Wei Huang,et al.  Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. , 2017, ACS nano.

[25]  Sang-Hoon Park,et al.  Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) , 2017 .

[26]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[27]  K. M. Gupta,et al.  Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation , 2017, Nature Communications.

[28]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[29]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[30]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[31]  Lai-fei Cheng,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[32]  Jerry Y. S. Lin Molecular sieves for gas separation , 2016, Science.

[33]  Y. Gu,et al.  Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. , 2016, Chemical communications.

[34]  V. Valtchev,et al.  Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2. , 2016, Journal of the American Chemical Society.

[35]  C. Zhi,et al.  Ultrathin MXene‐Micropattern‐Based Field‐Effect Transistor for Probing Neural Activity , 2016, Advanced materials.

[36]  Jie Shen,et al.  Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. , 2016, ACS nano.

[37]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[38]  Thanh Huu Nguyen,et al.  Oriented MFI Membranes by Gel‐Less Secondary Growth of Sub‐100 nm MFI‐Nanosheet Seed Layers , 2015, Advanced materials.

[39]  A. Huang,et al.  Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H-2/CO2 separation , 2015 .

[40]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[41]  Gongpin Liu,et al.  Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. , 2014, Angewandte Chemie.

[42]  J. Caro,et al.  Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. , 2014, Journal of the American Chemical Society.

[43]  Zifeng Yan,et al.  Graphene oxide membranes with tunable permeability due to embedded carbon dots. , 2014, Chemical communications.

[44]  M. Tsapatsis 2‐dimensional zeolites , 2014 .

[45]  Shaohui Li,et al.  New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation , 2014 .

[46]  Jae-Young Choi,et al.  Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes , 2013, Science.

[47]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[48]  G. Zhu,et al.  Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by ‘dual-metal-source’ approach , 2013 .

[49]  Y. S. Lin,et al.  Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes , 2013 .

[50]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[51]  Ting Yang,et al.  Symmetric and Asymmetric Zeolitic Imidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) Nanocomposite Membranes for Hydrogen Purification at High Temperatures , 2012 .

[52]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[53]  Y. S. Lin,et al.  Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance , 2012 .

[54]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[55]  J. Caro,et al.  Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. , 2010, Angewandte Chemie.

[56]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[57]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[58]  M. Sahimi,et al.  Silicon carbide membranes for gas separation applications , 2007 .

[59]  F. Kapteijn,et al.  Adsorptive separation of light olefin/paraffin mixtures , 2006 .

[60]  Jens R. Rostrup-Nielsen,et al.  Large-Scale Hydrogen Production , 2002 .

[61]  O. Duman,et al.  Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions , 2009 .