The Provenance of Regolith at the Chang'e‐5 Candidate Landing Region

[1]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[2]  V. Sharpton Outcrops on lunar crater rims: Implications for rim construction mechanisms, ejecta volumes and excavation depths , 2014 .

[3]  A. McEwen,et al.  Galileo observations of post-imbrium lunar craters during the first Eearth-Moon flyby , 1993 .

[4]  Long Xiao,et al.  Geological Characteristics of Von Kármán Crater, Northwestern South Pole‐Aitken Basin: Chang'E‐4 Landing Site Region , 2018, Journal of Geophysical Research: Planets.

[5]  C. Pieters,et al.  Modeling the provenance of the Apollo 16 regolith , 2006 .

[6]  William F. Bottke,et al.  An asteroid breakup 160 Myr ago as the probable source of the K/T impactor , 2007, Nature.

[7]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[8]  Ouyang Ziyuan Science Results of Chang’e-1 Lunar Orbiter and Mission Goals of Chang’e-2 , 2010 .

[9]  Wei Zuo,et al.  The Chang’e 3 Mission Overview , 2015 .

[10]  L. Haskin,et al.  On estimating contributions of basin ejecta to regolith deposits at lunar sites , 2003 .

[11]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[12]  Carle M. Pieters,et al.  Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin , 2004 .

[13]  D. Paige,et al.  Crater Size-Frequency Distributions on the Ejecta of Giordano Bruno , 2014 .

[14]  D. Gault,et al.  On the origin of the lunar smooth-plains , 1975 .

[15]  S. V. Gasselt,et al.  Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS , 2011 .

[16]  Newell J. Trask,et al.  The Geologic History of the Moon , 2020 .

[17]  W. Bottke,et al.  Earth and Moon impact flux increased at the end of the Paleozoic , 2019, Science.

[18]  R. J. Pike Ejecta from large craters on the moon: comments on the geometric model of McGetchin et al. , 1974 .

[19]  T. Krüger,et al.  Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims , 2017 .

[20]  V. Oberbeck The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy , 1975 .

[21]  Tomas Kohout,et al.  A New Lunar Impact Crater Database , 2009 .

[22]  Ralf Jaumann,et al.  Ages and stratigraphy of lunar mare basalts: A synthesis , 2011 .

[23]  Xingguo Zeng,et al.  Topographic and geologic analysis of the Pre-selection landing sitesfor Chang 'E 5(CE-5) lunar sample returning mission of China , 2017 .

[24]  J. Head,et al.  The nature of crater rays: The Copernicus example , 1985 .

[25]  Timothy D. Glotch,et al.  The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang'E‐5 mission , 2016 .

[26]  Bo Wu,et al.  Rock Abundance and Crater Density in the Candidate Chang'E‐5 Landing Region on the Moon , 2018, Journal of Geophysical Research: Planets.

[27]  Jin Chang,et al.  Primary scientific results of Chang’E-1 lunar mission , 2010 .

[28]  H. Hiesinger,et al.  Geology and Scientific Significance of the Rümker Region in Northern Oceanus Procellarum: China's Chang'E‐5 Landing Region , 2018, Journal of Geophysical Research: Planets.

[29]  C. Chapman,et al.  What are the real constraints on the existence and magnitude of the late heavy bombardment , 2007 .

[30]  Wei Gao,et al.  Overall scheme and on-orbit images of Chang’E-2 lunar satellite CCD stereo camera , 2011 .

[31]  P. Schultz,et al.  Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry , 2003 .

[32]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[33]  David E. Smith,et al.  Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi‐ring basin formation , 2011 .

[34]  Akira Iwasaki,et al.  Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE , 2008 .

[35]  Richard J. Pike,et al.  Control of crater morphology by gravity and target type - Mars, earth, moon , 1980 .

[36]  Bruce A. Campbell,et al.  The origin of lunar crater rays , 2000 .

[37]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[38]  Tiantian Liu,et al.  Ballistic Sedimentation of Impact Crater Ejecta: Implications for the Provenance of Lunar Samples and the Resurfacing Effect of Ejecta on the Lunar Surface , 2020, Journal of Geophysical Research: Planets.

[39]  Meng‐Hua Zhu,et al.  Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins , 2016 .

[40]  D. H. Scott,et al.  Multiringed basins - Illustrated by Orientale and associated features. [geologic mapping and photographs of lunar ejecta] , 1974 .

[41]  James W. Head,et al.  Radial thickness variation in impact crater ejecta - Implications for lunar basin deposits , 1973 .

[42]  Wei Zuo,et al.  Lunar farside to be explored by Chang’e-4 , 2019, Nature Geoscience.

[43]  J. Richardson,et al.  Heterogeneous impact transport on the Moon , 2017 .

[44]  Zhiyong Xiao,et al.  Subsurface structures of large volcanic complexes on the nearside of the Moon: A view from GRAIL gravity , 2014 .

[45]  D. H. Scott,et al.  Geologic Map of the West Side of the Moon , 1977 .

[46]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .