Zinc-Salen-Catalyzed Asymmetric Alkynylation of Alkyl Acylsilanes

Optically active tertiary propargylic alcohols are useful and versatile building blocks in organic synthesis, and their direct access by enantioselective addition of alkyne nucleophiles to ketones has achieved significant progress over the last ten years. In view of the potential applications of acylsilanes as useful synthetic equivalents of aldehydes, we described a general catalytic enantioselective addition of terminal alkynes to alkyl acylsilanes. After reaction optimization involving variation of solvent, temperature, catalyst ratio and various catalysts screen, the in situ generated Zn-salen complex was chosen as catalyst. With hexane as solvent, the silylated tertiary propargylic alcohols were obtained in satisfactory yields and ees for both aliphatic and aromatic alkynes.

[1]  Rui Wang,et al.  Catalytic asymmetric addition of alkynylzinc reagents to ketones using polymer-supported chiral Schiff-base amino alcohols , 2008 .

[2]  M. Kanai,et al.  Copper(I) alkoxide-catalyzed alkynylation of trifluoromethyl ketones. , 2007, Organic letters.

[3]  Quan Wang,et al.  Asymmetric addition of 1-ethynylcyclohexene to both aromatic and heteroaromatic ketones catalyzed by a chiral Schiff base-zinc complex. , 2007, Organic & biomolecular chemistry.

[4]  S. Denmark,et al.  Synthesis of acylsilanes from morpholine amides. Synthesis of 1-(dimethyl(phenyl)silyl)propan-1-one [dimethyl(1-oxopropyl)phenylsilane] , 2007 .

[5]  B. LettanRobert,et al.  モルホリンアミドからアシルシランの合成 1‐(ジメチル(フェニル)シリル)プロパン‐1‐オンの合成 , 2007 .

[6]  K. Scheidt,et al.  Stereoselective Lewis acid-catalyzed α-acylvinyl additions , 2006 .

[7]  A. Chan,et al.  Highly Enantioselective Catalytic Alkynylation of Ketones – A Convenient Approach to Optically Active Propargylic Alcohols , 2006 .

[8]  Lei Liu,et al.  Low ligand loading, highly enantioselective addition of phenylacetylene to aromatic ketones catalyzed by Schiff-base amino alcohols. , 2006, Organic letters.

[9]  A. Chan,et al.  Synthesis and application of new chiral catalysts for asymmetric alkynylation reactions , 2005 .

[10]  Lei Liu,et al.  Enantioselective Alkynylation of Aromatic Ketones Catalyzed by New Chiral Oxazolidine Ligands , 2005 .

[11]  Lei Liu,et al.  Highly enantioselective phenylacetylene addition to aromatic ketones catalyzed by cinchona alkaloid-aluminum complexes. , 2005, The Journal of organic chemistry.

[12]  Yifeng Zhou,et al.  Highly enantioselective phenylacetylene additions to ketones catalyzed by (S)-BINOL-Ti complex. , 2004, Organic letters.

[13]  K. Scheidt,et al.  Efficient synthesis of acylsilanes using morpholine amides. , 2004, Organic letters.

[14]  P. Cozzi,et al.  Acetylenes in Catalysis: Enantioselective Additions to Carbonyl Groups and Imines and Applications Beyond , 2004 .

[15]  L. Pu Asymmetric Alkynylzinc Additions to Aldehydes and Ketones , 2003 .

[16]  A. Chan,et al.  Enantioselective alkynylation of aromatic ketones catalyzed by chiral camphorsulfonamide ligands. , 2003, Angewandte Chemie.

[17]  P. Cozzi Enantioselective alkynylation of ketones catalyzed by Zn(salen) complexes. , 2003, Angewandte Chemie.

[18]  J. Cummins,et al.  Highly Enantioselective 1,2-Addition of Lithium Acetylide-Ephedrate Complexes: Spectroscopic Evidence for Reaction Proceeding via a 2:2 Tetramer, and X-ray Characterization of Related Complexes , 2000 .

[19]  B. Trost,et al.  Palladium-Catalyzed Enyne Cycloisomerization Reaction in an Asymmetric Approach to the Picrotoxane Sesquiterpenes. 2. Second-Generation Total Syntheses of Corianin, Picrotoxinin, Picrotin, and Methyl Picrotoxate , 1999 .

[20]  Paul J. Reider,et al.  Eine neue, hochenantioselektive Alkinylierung von Ketonen, die durch chirale Zinkaminoalkoxide gesteuert wird , 1999 .

[21]  L. Tan,et al.  A Novel, Highly Enantioselective Ketone Alkynylation Reaction Mediated by Chiral Zinc Aminoalkoxides. , 1999, Angewandte Chemie.

[22]  G. Varchi,et al.  Synthesis of enantiopure β- and γ-amino alcohols from homochiral α- and β-aminoacylsilanes as stable synthetic equivalents of α- and β-amino aldehydes , 1999 .

[23]  J. Larrow,et al.  (R,R)‐N,N′‐Bis(3,5‐di‐tert‐Butylsalicylidene)‐1,2‐Cyclohexanediamino Manganese(III) Chloride, A Highly Enantioselective Epoxidation Catalyst , 2003 .

[24]  James R. Moore,et al.  Practical asymmetric synthesis of Efavirenz (DMP 266), an HIV-1 reverse transcriptase inhibitor , 1998 .

[25]  B. Bonini,et al.  Allylation reactions of acylsilanes as synthetic equivalents of aldehydes. Application to a stereocontrolled synthesis of (1S,2S,5S)-(10S)-and-(10R)-allyl myrtanol , 1998 .

[26]  A. J. Thompson,et al.  Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures and Relative Reactivities of Mixed Aggregates Underlying the High Enantioselectivities , 1998 .

[27]  E. Corley,et al.  Use of an ephedrine alkoxide to mediate enantioselective addition of an acetylide to a prochiral ketone: asymmetric synthesis of the reverse transcriptase inhibitor L-743,726 , 1995 .

[28]  W. Roush,et al.  Enantioselective Total Synthesis of (-)-Chlorothricolide , 1994 .

[29]  E. Jacobsen,et al.  A Practical Method for the Large-Scale Preparation of [N,N'-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a Highly Enantioselective Epoxidation Catalyst , 1994 .

[30]  P. C. Page,et al.  Synthesis and chemistry of acyl silanes , 1990 .

[31]  A. Degl'innocenti,et al.  Synthesis and synthetic potential of acylsilanes , 1990 .

[32]  A. Gołębiowski,et al.  Optically active N-protected .alpha.-amino aldehydes in organic synthesis , 1989 .