From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction

Abstract In this review the effect of the growth process on the formation of defects in the hetero-epitaxial 3C-SiC film and the possible path for defects reduction has been reported. In our analysis of the experimental data we started from the realization of the carbonization layer, the defects at the interface and in the silicon substrate, to the growth of thin and even very thick layers. The discussion has been focalized on the growth on planar blanket Si substrates without the presence of structures or specific buffer layers. Both Chemical Vapour Deposition (CVD) and Sublimation Epitaxy (SE) processes have been reported and studied in detail.

[1]  M. Abe,et al.  Hetero- and homo-epitaxial growth of 3C-SiC for MOS-FETs , 2006 .

[2]  M. Syväjärvi,et al.  Lateral Enlargement Growth Mechanism of 3C-SiC on Off-Oriented 4H-SiC Substrates , 2014 .

[3]  I. Prieto,et al.  Stacking Fault Analysis of Epitaxial 3C-SiC on Si(001) Ridges , 2016 .

[4]  E. Sakuma,et al.  High‐temperature electrical properties of 3C‐SiC epitaxial layers grown by chemical vapor deposition , 1984 .

[5]  M. I. Chaudhry Electrical properties of β‐SiC metal‐oxide‐semiconductor structures , 1991 .

[6]  G. Litrico,et al.  Carbonization and transition layer effects on 3C-SiC film residual stress , 2017 .

[7]  S. Scalese,et al.  Analysis on 3C-SiC Layer Grown on Pseudomorphic-Si/Si1-xGex/Si(001) Heterostructures , 2014 .

[8]  A. Henry,et al.  Growth of 3CSiC on on-axis Si(100) substrates by chemical vapor deposition , 1995 .

[9]  T. Chassagne,et al.  Evidence of electrical activity of extended defects in 3C-SiC grown on Si , 2010 .

[10]  G. Ferro,et al.  Control of 3C–SiC/Si wafer bending by the “checker‐board” carbonization method , 2005 .

[11]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[12]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[13]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[14]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[15]  P. Godignon,et al.  Fabrication of monocrystalline 3C–SiC resonators for MHz frequency sensors applications , 2008 .

[16]  Chin-Che Tin,et al.  Reduction of etch pits in heteroepitaxial growth of 3CSiC on silicon , 1995 .

[17]  W. J. Choyke,et al.  Raman scattering studies of chemical‐vapor‐deposited cubic SiC films of (100) Si , 1988 .

[18]  C. Bongiorno,et al.  Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates , 2007 .

[19]  G. Ferro,et al.  Defect morphology and strain of CVD grown 3C–SiC layers: effect of the carbonization process , 2005 .

[20]  M. Syväjärvi,et al.  Sublimation growth of bulk 3C-SiC using 3C-SiC-on-Si (1 0 0) seeding layers , 2017 .

[21]  Andrea Canino,et al.  Stacking faults evolution during epitaxial growths: Role of surface the kinetics , 2010 .

[22]  Stephen E. Saddow,et al.  Thermal detection mechanism of SiC based hydrogen resistive gas sensors , 2006 .

[23]  C. Taylor,et al.  Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method , 1997 .

[24]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[25]  G. Ferro,et al.  A Vapor–Liquid–Solid Mechanism for Growing 3C‐SiC Single‐Domain Layers on 6H‐SiC(0001) , 2006 .

[26]  S. Ustin,et al.  Structural defects in 3C–SiC grown on Si by supersonic jet epitaxy , 1999 .

[27]  M. Sidorov,et al.  Low-temperature chemical-vapor deposition of 3C-SiC films on Si(100) using SiH4-C2H4-HCl-H2 , 1998 .

[28]  Claude A. Klein,et al.  How accurate are Stoney’s equation and recent modifications , 2000 .

[29]  C Locke,et al.  Advanced Residual Stress Analysis and FEM Simulation on Heteroepitaxial 3C–SiC for MEMS Application , 2011, Journal of Microelectromechanical Systems.

[30]  M. Mehregany,et al.  Mechanical properties of epitaxial 3C silicon carbide thin films , 2005, Journal of Microelectromechanical Systems.

[31]  S. Suzuki,et al.  Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOSFET fabricated on (11 2 0) face , 2002, IEEE Electron Device Letters.

[32]  M. Syväjärvi,et al.  Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds , 2012 .

[33]  M. Mehregany,et al.  Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy , 2002 .

[34]  Herbert A. Will,et al.  Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices , 1983 .

[35]  M. Eickhoff,et al.  High quality β-SiC films obtained by low-temperature heteroepitaxy combined with a fast carbonization step , 1999 .

[36]  Werner Wesch,et al.  Silicon carbide: Synthesis and processing , 1996 .

[37]  H. Nagasawa,et al.  3C-SiC single-crystal films grown on 6-inch Si substrates , 1997 .

[38]  R. Davis,et al.  Hall measurements as a function of temperature on monocrystalline SiC thin films , 1990 .

[39]  A. Steckl,et al.  Structural characterization of nanometer Sic films grown on Si , 1993 .

[40]  H. Matsunami,et al.  Solid-State Phase Transformation in Cubic Silicon Carbide , 1991 .

[41]  Gabriel Ferro,et al.  Study of surface defects on 3C–SiC films grown on Si(1 1 1) by CVD , 2003 .

[42]  Masayuki Abe,et al.  Fabrication and Characterization of 3C‐SiC‐Based MOSFETs , 2006 .

[43]  M. Syväjärvi,et al.  Sublimation epitaxy of 3C-SiC grown at Si- and C-rich conditions , 2012 .

[44]  Koji Nishio,et al.  Heteroepitaxial growth of (111) 3C–SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition , 2004 .

[45]  F. Via,et al.  Microtwin reduction in 3C–SiC heteroepitaxy , 2010 .

[46]  A. Leycuras,et al.  Strain and wafer curvature of 3C‐SiC films on silicon: influence of the growth conditions , 2006 .

[47]  G. Chung,et al.  Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD , 2007 .

[48]  G. Ferro,et al.  Infrared kinetic study of ultrathin SiC buffer layers grown on Si(100) by reactive chemical vapour deposition , 1996 .

[49]  Inspec,et al.  Properties of silicon carbide , 1995 .

[50]  T. Chassagne,et al.  Transmission electron microscopy investigation of microtwins and double positioning domains in (111) 3C-SiC in relation with the carbonization conditions , 2009 .

[51]  M. Mehregany,et al.  Silicon carbide for microelectromechanical systems , 2000 .

[52]  G. Litrico,et al.  3C-SiC Bulk Sublimation Growth on CVD Hetero-Epitaxial Seeding Layers , 2016, 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM).

[53]  H. Okumura,et al.  Investigation of antiphase domain annihilation mechanism in 3C–SiC on Si substrates , 2003 .

[54]  G. Ferro,et al.  Hexamethyldisilane/propane versus silane/propane precursors: application to the growth of high-quality 3C–SiC on Si , 2003 .

[55]  W. J. Choyke,et al.  Growth of improved quality 3C-SiC films on 6H-SiC substrates , 1990 .

[56]  H. Okumura,et al.  Effect of Reduced Pressure on 3C‐SiC Heteroepitaxial Growth on Si by CVD , 2006 .

[57]  M. Wood,et al.  Role of Ge on film quality of SiC grown on Si , 2002 .

[58]  T. Chassagne,et al.  Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. , 2009 .

[59]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .

[60]  M. Abe,et al.  Fabrication of high performance 3C‐SiC vertical MOSFETs by reducing planar defects , 2008 .

[61]  S. Reshanov,et al.  High Quality 3C-SiC Substrate for MOSFET Fabrication , 2012 .

[62]  S. Saddow,et al.  Structural defects in (100) 3C-SiC heteroepitaxy: Influence of the buffer layer morphology on generation and propagation of stacking faults and microtwins , 2009 .

[63]  H. Okumura,et al.  Dependence of stacking fault and twin densities on deposition conditions during 3C-SiC heteroepitaxial growth on on-axis Si(0 0 1) substrates , 2006 .

[64]  Hiroshi Yano,et al.  Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide , 2010, IEEE Electron Device Letters.

[65]  H. Okumura,et al.  Reduction of defects propagating into 3C-SiC homoepilayers by reactive ion etching of 3C-SiC heteroepilayer substrates , 2007 .

[66]  A. Magna,et al.  Electron backscattering from stacking faults in SiC by means ofab initioquantum transport calculations , 2012, 1206.6600.

[67]  D. Tsai,et al.  Low pressure chemical vapor deposition of silicon carbide from dichlorosilane and acetylene , 2000 .

[68]  A. Magna,et al.  Optical investigation of bulk electron mobility in 3C–SiC films on Si substrates , 2010 .

[69]  M. Syväjärvi,et al.  Single Domain 3C-SiC Growth on Off-Oriented 4H-SiC Substrates , 2015 .

[70]  H. Okumura,et al.  Reductions of twin and protrusion in 3C-SiC heteroepitaxial growth on Si(100) , 2006 .

[71]  M. Syväjärvi,et al.  Physical Vapor Growth of Double Position Boundary Free, Quasi-Bulk 3C-SiC on High Quality 3C-SiC on Si CVD Templates , 2016 .

[72]  D. Chaussende,et al.  Prospects for 3C-SiC bulk crystal growth , 2008 .

[73]  Stephen E. Saddow,et al.  Advances in silicon carbide processing and applications , 2004 .

[74]  Chunjuan Tang,et al.  Growth of void-free 3C-SiC films by modified two-step carbonization methods , 2012 .

[75]  S. Saddow,et al.  Patterned substrate with inverted silicon pyramids for 3C–SiC epitaxial growth: A comparison with conventional (001) Si substrate , 2013 .

[76]  G. Litrico,et al.  Growing bulk‐like 3C‐SiC from seeding material produced by CVD , 2017 .

[77]  H. Nagasawa,et al.  Reducing Planar Defects in 3C–SiC , 2006 .

[78]  J. Casady Processing of Silicon Carbide for Devices and Circuits , 2000 .

[79]  A. Henry,et al.  Growth of 6H and 4H-SiC by sublimation epitaxy , 1999 .

[80]  A. Lebedev,et al.  Influence of the defect density (twins boundaries) on electrical parameters of 3C-SiC epitaxial films , 2009 .

[81]  M. Syväjärvi,et al.  Microstructural characterization of very thick freestanding 3C-SiC wafers , 2004 .

[82]  J. Han,et al.  Comprehensive analysis of microtwins in the 3C-SiC films on Si(001) substrates , 2001 .

[83]  U. Gösele,et al.  Micropipes and voids at β¨SiC/Si(100) interfaces: an electron microscopy study , 1997 .

[84]  P. Wellmann,et al.  Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC , 2006 .

[85]  A. Smith,et al.  Surface reconstructions of cubic gallium nitride (001) grown by radio frequency nitrogen plasma molecular beam epitaxy under gallium-rich conditions , 2006 .

[86]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[87]  T. Kimoto,et al.  Fast homoepitaxial growth of 4H-SiC with low basal-plane dislocation density and low trap concentration by hot-wall chemical vapor deposition , 2007 .

[88]  H. Nagasawa,et al.  Suppression of etch pit and hillock formation on carbonization of Si substrate and low temperature growth of SiC , 1991 .

[89]  M. Capano,et al.  Heteroepitaxial 3C-SiC on Si with Various Carbonization Process Conditions , 2009 .